

Phoenix Solar Park, Pembroke

Flood Consequence Assessment

On behalf of: Wessex Solar Energy

Project Ref: 332610851/100 | Rev: - | Date: December 2023

Registered Office: Buckingham Court Kingsmead Business Park, London Road, High Wycombe, Buckinghamshire, HP11 1JU Office Address: 61 Oxford Street, Manchester, M1 6EQ T: +44 (0)161 245 8900 E: Manchester.UK@stantec.com

Document Control Sheet

Project Name:	Phoenix Solar Park, Pembroke
Project Ref:	332610851/100
Report Title:	Flood Consequence Assessment
Doc Ref:	-
Date:	December 2023

	Name	Position	Signature	Date	
Prepared by:	Elizabeth Edney	Senior Engineer	E Edney	05/12/23	
Reviewed by:	John Pulsford	Senior Associate	J Pulsford	05/12/23	
Approved by:	Amy Hensler	Director	pp. J Pulsford	05/12/23	
For and on behalf of Stantec UK Limited					

Revision	Date	Description	Prepared	Reviewed	Approved
DRAFT	05/12/23	Draft for comment	EE	JNP	JNP
-	20/12/23	Planning Issue	EE	JNP	JNP

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

Execut	ive Sum	nmary	1
Summa	ary of K	ey FRA Data	2
Abbrev	viations		3
1	Introdu	iction	4
	1.1	Scope of Report	4
	1.2	Sources of Information	4
	1.3	Caveats and Exclusions	5
2	Plannir	ng Policy Context	6
	2.2	National Policy and Guidance	6
	2.3	Local Policy and Guidance	6
3	Site Se	tting	7
	3.1	Site Description	7
	3.2	Topography	7
	3.3	Hydrological Setting	8
	3.4	Existing Drainage Arrangements	8
	3.5	Geology and Hydrogeology	9
4	Impact	of Climate Change	10
5	Overvi	ew of Flood Risk	11
	5.2	Development Advice Map (DAM)	11
	5.3	Surface Water	12
	5.4	Reservoir	13
	5.5	Groundwater	13
	5.6	Sewer Flooding	13
	5.7	Pembrokeshire SFCA	13
	5.8	South West Wales Stage 1 SFCA	14
	5.9	Summary of Flood Risk	14
6	Propos	ed Development and Sequential Test	16
	6.1	Proposed Development	16
	6.2	TAN15 Vulnerability Classification	16
7	Propos	ed Surface Water Drainage Strategy	17
	7.1	Introduction	17
	7.2	Discharge Destination	17
	7.3	Design Criteria and Outline Surface Water Drainage Strategy	18
	7.4	Effect of Solar Panels on Surface Water Runoff	19
	7.5	Designing for Exceedance	20
	7.6	Other Considerations	20
8	Residu	al Risk	22
9	Conclu	isions	23

Figures

Figure 3.1:	Site Location Plan (not to scale)	. 7
	NRW Watercourses	
Figure 5.1:	WG Development Advice Map (DAM)	11
Figure 5.2:	EA Risk of Flooding from Surface Water Map	12

Tables

Table 4.1:	Climate Change – Peak Rainfall Intensity Allowances	10
	Summary of Flood Risk	
Table 8.2:	Existing Greenfield Runoff Rates	19

Appendices

- Appendix A NRW Open Source Flood Maps
- Appendix B Topographic Survey
- Appendix C Trial Pit Logs
- Appendix D Wessex Solar Energy Drawings
- Appendix E Proposed Drainage Information

Executive Summary

This Flood Consequence Assessment (FCA) has been prepared by Stantec UK Ltd to support a planning application for a solar farm development on land west of Blackberry Lane near the village of Cosheston, Pembrokeshire.

In accordance with the fundamental objectives of Planning Policy Wales (PPW), the FCA demonstrates that:

- (i) The development is safe;
- (ii) The development does not increase flood risk; and,
- (iii) The development does not detrimentally affect third parties.

The National Resources Wales (NRW) data confirms that the site is located wholly within Flood Zone A, defined in the Technical Advice Note: Development and Flood Risk as follows:

Flood Zone A 'Low Probability' – land to be considered at little or no risk of fluvial or tidal/coastal flooding.

The NRW online flood mapping indicates that the majority of the site is at 'Very Low' risk of surface water flooding, with localised areas of 'Low', 'Medium' and 'High' risk associated with the ditches running through the site.

The proposals for this development constitute a '*Less Vulnerable*' land use, which is considered appropriate within Flood Zone A in accordance with TAN15. The proposed masterplan shows that all proposed development will be located within Flood Zone 1 and within areas of 'very low' or 'low' surface water flood risk, post-development.

The flood risk mitigation strategy for the development consists of the following elements:

- Surface water drainage will be provided in the form of swales down slope of the PV panels, which will intercept surface water flows following the existing natural flow paths present on the site. The swales will act to capture and store the water before it is discharged via a piped outfall to the watercourses located within the red line boundary.
- The proposed inverter cabins and control building will have a suitable freeboard (minimum of 150mm above external ground level).
- Hence, there will be no increased flood risk to external receptors as part of the development proposals.

In conclusion, this FCA demonstrates that through the incorporation of the above flood risk mitigation, the proposed development is safe for its lifetime and complies with the requirements of PPW and TAN15.

Summary of Key FRA Data

Aspect of flood risk	Applicable Guidance/ Source of Data, proposed by Stantec	Summary	Section of FRA
	,	Three development parcels near Cosheston, Pembrokeshire. Approximate OS grid references:	
Site Location	n/a	West Parcel: 201,345m E; 203,380m N South Parcel: 201,455m E; 203,180m N East Parcel: 201,790m E; 203,450m N	3.1
Existing Ground Levels	Azimuth Land Surveys Ltd.	West Parcel: 37.35m AOD to 19.60m AOD South Parcel: 27.60m AOD to 25.46m AOD East Parcel: 35.95m AOD to 23.15m AOD	3.2
Primary source of flood risk	NRW maps	Surface Water	5.1
Presence of flood defences	NRW maps	None	n/a
Proposed Development	Proposals by Wessex Solar Energy	Development of a solar farm consisting of Photovoltaic panels, inverter cabins, control cabin and access road.	6.0
Planning Aspects			
Flood Risk Vulnerability	TAN15: Development and Flood Risk	'Less Vulnerable' – appropriate in Flood Zone A.	6.0
Flood Zone	NRW Development Advice Map (DAM)	Flood Zone A 'Low Probability'	5.1
Applicable Climate Change Allowances	WG climate change allowances guidance	+20% and +40% for peak rainfall intensity	4.0
Proposed Mitigation Me	easures		
Ground Floor Levels	BS8533:2017 PCC SFCA	It is recommended that ground floor levels are set a suitable freeboard above surrounding ground (minimum 150mm) to mitigate the residual flood risk associated with excess surface water runoff in an extreme rainfall event.	7.2
Floodplain Storage	n/a	Site is located outside of floodplain, therefore no impact on floodplain storage or flood flow routes.	7.3
Safe Access	n/a	Continuous safe access available onto track located to south-west of Parcel South.	7.3
Surface Water Drainage	WG Statutory Standards for Sustainable Drainage Systems	Proposed SuDS strategy based on swales with piped outfalls to watercourses within or adjacent to site boundary.	8.0

Abbreviations

ABI	-	Association of British Insurers
AP	-	Annual Probability
BGS	-	British Geological Survey
CDM	-	Construction (Design and Management)
CIRIA	-	Construction Industry Research and Information Association
DDA	-	Disability Discrimination Act
DEFRA	-	Department for Environment, Food and Rural Affairs
EA	-	Environment Agency
FRA	-	Flood Risk Assessment
GIS	-	Geographic Information System
LLFA	-	Lead Local Flood Authority
m. AOD	-	Metres Above Ordnance Datum (Newlyn)
PCC	-	Pembrokeshire County Council
PPW	-	Planning Policy Wales
RoSWF	-	Risk of Surface Water Flooding
SuDS	-	Sustainable Drainage Systems
SFCA	-	Strategic Flood Consequence Assessment
TAN15	-	Technical Advisory Note 15: Development and Flood Risk

1 Introduction

1.1 Scope of Report

- 1.1.1 This Flood Consequences Assessment (FCA) has been prepared by Stantec, on behalf of our client, Wessex Solar Energy, to support a planning application for the construction of a solar farm, on land west of Blackberry Lane, near the village of Cosheston in Pembrokeshire, Wales.
- 1.1.2 The report is based on the available flood risk information for the site as detailed in Section 1.2 and prepared in accordance with the planning policy requirements set out in Section 1.3. The scope of the FCA is consistent with the guidance contained in Planning Policy Wales (PPW) and Technical Advisory Note 15 (TAN15): Development and Flood Risk.
- 1.1.3 Stantec has many years of experience in, amongst other areas, the assessment of flood risk, hydrology, flood defence and river engineering. The authors and reviewers of the document are all experienced engineers and members of chartered institutions such as the Chartered Institution of Water and Environmental Management (CIWEM) or the Institution of Civil Engineers (ICE).

1.2 Sources of Information

- 1.2.1 The FCA has been prepared based on the following sources of flood risk information:
 - National Resources Wales (NRW) published 'Open Data' datasets available online, reproduced with OS mapping under license to Stantec (contains Ordnance Survey data © Crown copyright and database right [2023], contains National Resources Wales information © 2023 National Resources Wales and database right) (see Appendix A);
 - Topographic Survey by Azimuth Land Surveys Ltd., dated November 2013 (see Appendix B);
 - Trial pit logs by CC Ground Investigations Ltd, dated 5th June 2020 (see Appendix C);
 - Development proposals by Wessex Solar Energy, dated December 2023 (see Appendix D);
 - The NRW online flood maps at: <u>https://naturalresources.wales/evidence-and-data/maps/long-term-flood-risk/?lang=en</u>
 - Pembrokeshire County Council (PCC) Stage 1 Strategic Flood Consequence Assessment (SFCA), dated September 2019;
 - PCC Local Flood Risk Management Strategy, dated February 2015;
 - The South West Wales SFCA Final Report, dated November 2022;
 - CIRIA Sustainable Drainage Systems (SuDS) Manual C753, dated November 2015.
- 1.2.2 PCC is the Lead Local Flood Authority (LLFA) and Sustainable Drainage Approving Body (SAB) for the site. The relevant sections of their SFCA and local planning policy have been reviewed as part of compiling this report.

1.3 Caveats and Exclusions

- 1.3.1 This FCA has been prepared in accordance with TAN15 and Local Planning Policy. The proposed flood management and surface water management strategies are based on the relevant British Standards (BS8533), the standing advice provided by NRW, PCC or based on common practice.
- 1.3.2 The Construction (Design and Management) Regulations 2015 (CDM Regulations) will apply to any future development of this site which involves "construction" work, as defined by the CDM Regulations. As such it is the responsibility of the proposed developer (ultimate client) to fulfil its duties under the CDM Regulations.
- 1.3.3 The findings of this FCA are based on data available at the time of the study and on the subsequent assessment that has been undertaken to date. They relate to current development proposals as outlined in **Section 6**.
- 1.3.4 An updated national study on the projected impacts of climate change was released in November 2018 by the Met Office (UKCP18). In the short-term there is no published guidance on how these updated projections should be considered in development planning and, until such guidance is released, NRW confirms that the consideration of climate change should continue to be based on the current NRW advice 'Flood Consequence Assessments: Climate Change Allowances' (August 2016); NRW's guidance updated in 2021 has therefore been referred to as a basis for this study.
- 1.3.5 It should be noted that the insurance market applies its own tests to properties in terms of determining premiums and the insurability of properties for flood risk. Those undertaking development in areas which may be at risk of flooding are advised to contact their insurers or the Association of British Insurers (ABI) to seek further guidance prior to commencing development. Stantec do not warrant that the advice in this report will guarantee the availability of flood insurance either now or in the future.

2 Planning Policy Context

2.1.1 This FRA has been prepared in accordance with the relevant national and local planning policy and statutory authority guidance as detailed below.

2.2 National Policy and Guidance

- 2.2.1 National policy in relation to flood risk is contained within **Planning Policy Wales (PPW) Edition 11,** updated November 2021 and issued by the Welsh Government (WG), with particular reference to the 'Water and Flood Risk' section and the WG 'Technical Advisory Note 15 (TAN15): Development and Flood Risk', dated July 2004.
- 2.2.2 These documents demonstrate a flood risk management approach for the lifespan of the proposed development considering the effects of climate change. The documents set the framework to minimise vulnerability, provide resilience to the impacts of climate change, and to fully consider the potential impacts of climate change for the lifetime of the development within the mitigation measures.
- 2.2.3 In September 2021, the WG updated the climate change allowances for peak river flow, rainfall intensity and sea level rise, and are outlined in the 'Flood Consequences Assessments: Climate Change Allowances' guidance document and supersedes the guidance issued in August 2016 (ref. CL-03-16). Climate change allowances are discussed further in Section 4.
- 2.2.4 The WG 'Statutory standards for sustainable drainage systems (SuDS) designing, constructing, operating and maintaining surface water drainage systems' was released in 2018 and provides the standards in relation to the design of surface water drainage systems in Wales. Further guidance was released for SuDS Approving Bodies (SABs) in 2019 under the WG 'Sustainable Drainage (SuDS) Statutory Guidance' for the implementation of Schedule 3 to the Flood and Water Management Act 2010, the mandatory use of SuDS on new developments and approval/adoption by the SAB.

2.3 Local Policy and Guidance

PCC Local Development Plan (LDP)

- 2.3.1 Local planning policy is contained within the **PCC Local Development Plan (LDP) up to 2021** (adopted February 2013). PCC is currently working on a replacement LDP for Pembrokeshire; however, this is still under consultation.
- 2.3.2 The current LDP does not contain any specific policies in relation to flooding, however the guidance accompanying **Policy GN.1 General Development Policy**, states:

"Where there are concerns that a proposal would cause harm to health and safety through contamination, adverse impact on air quality, land instability, flooding or erosion, professional advice will be sought from the relevant authority. Where such concerns relate to fluvial or coastal flooding and/or erosion, the provisions of the relevant Shoreline Management Plan and/or Catchment Flood Management Plan will inform consideration of the health and safety issues.

In some instances, anticipated on-site or off-site problems may render development inappropriate; in other cases, development may be possible if mitigation is available, to make the proposal resilient to the identified problems. No housing allocations have been identified within C1 or C2 flood zones in the Plan. A small number of other allocations are located within C1 or C2 flood zones. Where allocations are at risk of fluvial or surface water flooding, this is identified within the SPG Development Sites, with requirements establishing the level of information to be provided at application stage."

3 Site Setting

3.1 Site Description

- 3.1.1 The site comprises 14.1 hectares (ha) of land located immediately west of Blackberry Lane and north of the A477, near to the village of Cosheston, Pembrokeshire, Wales (see Figure 3.1 and Appendix A).
- 3.1.2 The site lies within the administrative boundary of PCC who are also the LLFA for the area.
- 3.1.3 There are 3 no. parcels of land proposed for the solar farm development, all of which are agricultural fields and are shown on Figure 2.1, and are as follows:
 - West Parcel: OS grid reference 201,345m E; 203,380m N;
 - South Parcel: OS grid reference 201,455m E; 203,180m N;
 - East Parcel: OS grid reference 201,790m E; 203,450m N.
- 3.1.4 The site is located approximately 100 metres (m) south of the 'Pembrokeshire Coast National Park' boundary.

Figure 3.1: Site Location Plan (not to scale)

3.2 Topography

- 3.2.1 A topographic survey was undertaken for the site by Azimuth Land Surveys Ltd. in November 2013 and is provided in Appendix B.
- 3.2.2 The topography can be summarised for each parcel as follows:
 - West Parcel: The ground slopes from 37.35m AOD along the northern boundary to 19.60m AOD in the south-western corner of the parcel;

- South Parcel: The ground slopes from 27.60m AOD in the east to 25.46m AOD in the southwestern corner and 20.10m AOD in the north-western corner of the parcel;
- East Parcel: The ground slopes from 35.95m AOD in the north-western corner to 23.15m AOD in the south-eastern corner of the parcel.

3.3 Hydrological Setting

- 3.3.1 There are no designated 'main rivers' located on site. The site lies within the catchment of the Cleddau and Pembrokeshire Coastal Rivers. Ford Pill discharges into the River Carew and is located approximately 850m northeast of the site. Cosheston Pill discharges into the River Cleddau (a designated 'main river') and is located approximately 900m to the west of the site.
- 3.3.2 A drain is located 150m south of the site, along the northern boundary of the A477. This is assumed to flow downslope to the west.
- 3.3.3 There are two minor ditches or drainage features which are located on site, shown on online mapping and in Figure 2.2:
 - W1 flowing south along the northeast boundary and then east towards Blackberry Lane;
 - **W2** flowing west along the southern boundary of a small, wooded area and then west towards Lower Nash Farm. A Spring also flows southwards along the western boundary of the wooden area before flowing into W2 and continuing west.

3.4 Existing Drainage Arrangements

3.4.1 The whole site is currently used for grazing and silage.

3.4.2 Surface water run-off currently drains either by infiltration or to the existing field boundaries and natural ditches which surround the site.

3.5 Geology and Hydrogeology

- 3.5.1 From a review of the 1:50,000 scale bedrock geology map from the British Geological Survey (BGS) online digital viewer, the bedrock beneath the site, from north to south, comprises the **Cosheston Group (Sandstone)**, the **Avon Group (Limestone and Mudstone)** and the **Black Rock Subgroup And Gully Oolite Formation (Limestone)**.
- 3.5.2 The Cosheston Group and Avon Group are both classified as 'Secondary A' aquifers. The Black Rock Subgroup And Gully Oolite Formation are classified as a 'Principal' aquifer by NRW.
- 3.5.3 The online BGS 1:50,000 scale superficial geology map indicates that there are no deposits across the site.
- 3.5.4 The UK Soil Observatory (UKSO) online 'Soilscapes for England and Wales' viewer indicates that the northern part of the site comprises 'slowly permeable seasonally wet acid loamy and clayey soils.' Central and southern parts of the site are located on 'freely drainage slightly acid but base-rich soils.'
- 3.5.5 Trial pits were excavated on site by CC Ground Investigations Ltd in June 2020, of which three were also used to carry out soakaway testing in accordance with BRE 365 (2016). The soakaway testing results confirmed that the site is not suitable for infiltration. A copy of the trial pit logs is provided in Appendix C.

4 Impact of Climate Change

- 4.1.1 PPW and the associated TAN15 place emphasis on the need to fully consider and design for the impacts of climate change as set out in the planning guidance. The guidance provides contingency allowances for potential increases due to climate change in:
 - Peak river flow;
 - Rainfall intensity; and
 - o Sea level rise.
- 4.1.2 Peak river flow and sea level rise are not applicable as the site is located at a significant distance from the fluvial floodplain and there is no tidal influence.
- 4.1.1 The potential increase in peak rainfall intensity needs to be considered in the surface water drainage strategy for new developments.
- 4.1.2 The anticipated changes in peak rainfall intensity in small catchments (less than 5km²), or urbanised drainage catchments are summarised in **Table 4.1**. For large rural drainage catchments, the peak river flow allowances are applied.
- 4.1.3 The guidance states that:

"Both the central and upper estimates should be assessed to understand the range of impact. As a minimum, development proposals should be assessed against the central estimate to inform design levels. Where the assessment indicates a significant flood risk for the upper estimate (e.g. depths, velocity), the flood consequences assessment will need to indicate the mitigation measures required to protect people and property."

Applies across all of Wales	2020s (2015-2039)	2050s (2040-2069)	2080s (2070-2115
Upper Estimate	10%	20%	40%
Central Estimate	5%	10%	20%

Table 4.1: Climate Change – Peak Rainfall Intensity Allowances

4.1.4 As the proposed development is considered as having a design life of around 60 years, a +20% and +40% climate change allowance will be assessed within the surface water drainage strategy discussed in Section 7.

5 Overview of Flood Risk

5.1.1 The following has been determined from the Stantec GIS flood maps provided in Appendix A, which are based on the NRW Open-Source datasets available online and reproduced with OS mapping under license to Stantec.

5.2 Development Advice Map (DAM)

- 5.2.1 The first phase in identifying whether a site is potentially at risk of flooding is to consult the WG Development Advice Map (DAM), available on the NRW website. This provides an initial indication of the extent of the Flood Zones. The Flood Zones are defined in Figure 1 of the TAN15 and PPW as follows:
 - Flood Zone A 'Low Probability' Considered to be at little or no risk of fluvial or tidal/coastal flooding;
 - Flood Zone B 'Medium Probability' Areas known to have been flooded in the past evidenced by sedimentary deposits;
 - Flood Zone C 'High Probability' Based on the Environment Agency (EA) extreme flood outline, equal to or greater than 0.1% (1 in 1000 Annual Probability (AP)) for river, tidal or coastal flooding.
 - **Flood Zone C1** Areas of the floodplain which are developed and served by significant infrastructure, including flood defences;
 - **Flood Zone C2** Areas of the floodplain without significant defence infrastructure.
- 5.2.2 A copy of the current DAM Flood Map for the site is included in Figure 5.1 and Stantec Figure 005 in Appendix A.

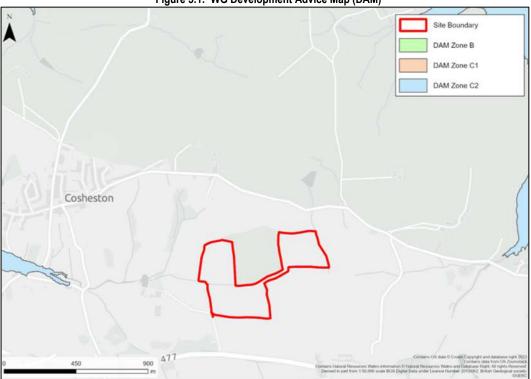


Figure 5.1: WG Development Advice Map (DAM)

5.2.3 The DAM indicates that the whole site is located within **Flood Zone A** and is therefore considered to be at little or no risk of fluvial flooding or tidal/coastal flooding.

5.3 Surface Water

- 5.3.1 The NRW 'Flood Map for Surface Water' shows where areas could be potentially susceptible to surface water flooding in an extreme rainfall event. The latest mapping assesses flooding resulting from severe rainfall events based on the following three scenarios:
 - 'High' Risk: 1 in 30 (3.3%) or greater AP rainfall event;
 - 'Medium' Risk: Between a 1 in 100 (1%) and 1 in 30 (3.3%) AP rainfall event;
 - 'Low' Risk: Between 1 in 1000 (0.1%) and 1 in 100 (1%) AP rainfall event;
 - 'Very Low' Risk: Lower than 1 in 1000 (0.1%) AP rainfall event.
- 5.3.2 The NRW Flood Map in Figure 5.2 indicates that the majority of the site is at 'Very Low' risk of surface water flooding. There are areas of 'Low' to 'High' risk associated with minor drainage features W1 and W2, described in Section 2.3, and their associated topographic lows.

Figure 5.2: EA Risk of Flooding from Surface Water Map

5.3.3 It should be noted that the surface water maps are generated using a generic methodology on a national scale, whereby rainfall is routed over a ground surface model. The analysis does not

take account of any specific local information on below-ground drainage infrastructure and infiltration, although an adjustment is included in urban areas to account for the impact of sewerage and a standard infiltration allowance based on soil type. Consequently, the mapping provides a guide to potentially vulnerable areas based on the general topography of an area.

5.4 Reservoir

- 5.4.1 NRW provides maps showing the risk of flooding in the event of a breach from reservoirs, based only on large reservoirs (over 10,000 cubic metres of water).
- 5.4.2 This mapping shows that the proposed site is not considered to be at risk in the event of a reservoir breach.
- 5.4.3 It should be emphasised that the likelihood of flooding from reservoir breach is very small in any case; NRW is the enforcement authority for the Reservoirs Act (1975) and all large, raised reservoirs are inspected and supervised by reservoir panel engineers.
- 5.4.4 NRW website states:

"Reservoir flooding is extremely unlikely to happen. There has been no loss of life in the UK from reservoir flooding since 1925. All large reservoirs must be inspected and supervised by reservoir panel engineers. As the enforcement authority for the Reservoirs Act 1975 in England, we ensure that reservoirs are inspected regularly, and essential safety work is carried out".

5.4.5 The risk of such an occurrence is therefore considered negligible.

5.5 Groundwater

5.5.1 PCC SFCA 2019 states under Section 3.1.1 – Flood datasets omitted in this study:

"Groundwater Flooding – no such dataset from either council."

- 5.5.2 Trial pits were excavated on site by CC Ground Investigations Ltd in June 2020, of which three were also used to carry out soakaway testing in accordance with BRE 365 (2016). Trial pits were excavated down to a depth of 2m below ground level and no groundwater was encountered (Appendix C).
- 5.5.3 If groundwater flooding was to occur on site, it would flow overland and be captured by existing field boundary ditches. As such, the risk of groundwater flooding on site is anticipated to be negligible.

5.6 Sewer Flooding

5.6.1 As the existing site is open fields, it is unlikely that sewerage infrastructure is present at the site. The risk of sewer flooding is therefore considered to be low.

5.7 Pembrokeshire SFCA

- 5.7.1 The PCC Stage 1 SFCA was released in September 2019. The information of specific relevance to the site is as follows:
 - The site is located within Flood Zone A;
 - There are no records of past flooding on or within the immediate vicinity of the site.

5.8 South West Wales Stage 1 SFCA

- 5.8.1 The South West Wales Stage 1 SFCA Final Report was released in November 2022 to provide information on flood risk across the South West Wales Councils (Carmarthenshire County, Neath Port Talbot, Pembrokeshire County and Swansea County), and the Brecon Beacons and Pembrokeshire Coast National Park Authorities.
- 5.8.2 The information provided within the Stage 1 SFCA is consistent with that in Section 5.7 and there are no records of flooding on or within the immediate vicinity of the site.

5.9 Summary of Flood Risk

5.9.1 **Table 5.1** provides an overview of flood risk to and from the site, based on the information obtained and detailed in this section.

Source of Flooding	Flood Risk Impact to the Site	Flood Risk Impact from the Site	Comment	
Fluvial			The site is located in Flood Zone A 'Low Probability' – considered to be at little or no risk of fluvial or tidal/coastal flooding, according to the WG DAMs.	
Tidal			The site is not located within an area at risk of tidal flooding.	
Surface Water/ Pluvial			The NRW mapping indicates that majority of the site is located within an area which is considered as being at a 'Very Low' risk of surface water flooding, with localised areas of 'Low', 'Medium' and 'High' risk shown in along routes of ordinary watercourses running adjacent to boundaries.	
			Nature of development is low in impermeable area which is to be managed through swales.	
Groundwater			Trial pitting completed in June 2020 encountered no groundwater. PCC hold no groundwater flooding dataset. Any groundwater would be captured by the existing ordinary	
			watercourses along field boundaries. Therefore, the overall risk is 'negligible'.	
Reservoirs, Canals, Ponds and Other Artificial Sources			The NRW map for flood risk from reservoirs confirms the development site is not at risk in the event of a reservoir failure. No canals or other artificial sources are in immediate vicinity.	
Sewers/Water Mains			The SFCA does not have any information relating to sewers or water mains on site. We are not currently aware of any sewers located on site or within the immediate vicinity.	
Wallis			Any flooding from sewers would be captured by the existing ordinary watercourses along field boundaries. Therefore, the overall risk is considered 'negligible'.	
		Low/Negligible Risk – No noticeable impact to or from the Site and not considered to be a constraint to development		
Key:		Medium Risk – Issue requires consideration but not a significant constraint to development		
		High Risk – Major constraint to development requiring active consideration in mitigation proposals		

Table 5.1: Summary of Flood Risk

- 5.9.2 The proceeding sections, specifically **Section 7**, outline the required mitigation to manage the flood risk impacts identified to have a medium or high risk (see **Table 5.1**). There is a predominantly low flood risk related to all other sources, as detailed in **Table 5.1**.
- 5.9.3 The management of residual flood risk is covered in **Section 8**.

6 **Proposed Development and Sequential Test**

6.1 **Proposed Development**

- 6.1.1 A detailed description of the proposed development is included elsewhere in the planning application. Plans illustrating the development proposals are included in **Appendix B**, however a brief description is outlined below.
- 6.1.2 The proposed development would comprise:
 - Access track approximately 864m in length;
 - 6,160 PhotoVoltaic (PV) Cells or Panels across 770 racks;
 - Control Building x 1 7m length x 3m width x 4m height;
 - Inverter Cabins x 5 10.4m length x 2.6m width x 3.18 height;
 - Foundations of the inverter cabins 12.25m length x 4.6m width
 - Surface water drainage swales to capture runoff from the site;
 - Temporary construction compound within the southern parcel.

6.2 TAN15 Vulnerability Classification

- 6.2.1 TAN15 classifies development according to its vulnerability to flooding. There are three categories, as defined in Figure 2 of TAN15:
 - Emergency services;
 - High vulnerable development;
 - Less vulnerable development.
- 6.2.2 TAN15 does not explicitly define the flood risk vulnerability of Solar Parks. However, there will be no permanent staff based on site and the PV panels and any other sensitive equipment can be raised off the ground. Hence, the proposed development is considered to be classified as 'less vulnerable'.
- 6.2.3 The proposed development is therefore considered to be appropriate for the DAM's classification of Flood Zone A.

7 Proposed Surface Water Drainage Strategy

7.1 Introduction

- 7.1.1 The key design criteria for the surface water management system detailed in the following documents:
 - PPW and TAN15
 - The WG 'Statutory standards for sustainable drainage systems'
 - The updated 'Flood Consequences Assessments: Climate change allowances' guidance.
- 7.1.2 The aim of the surface water management strategy is to focus on the management of surface water within the site boundary, to prevent any likelihood of flooding to adjacent sites, in line with the current Sustainable Drainage Systems (SuDs) guidance and standards.
- 7.1.3 TAN15 recognises that flood risk and other environmental damage can be managed by minimising changes in the volume and rate of surface runoff from development sites and recommends that priority is given to the use of SuDS in new development. The LLFA also promotes the utilisation of SuDS in new development.

7.2 Discharge Destination

7.2.1 As the intention of SuDS is to mimic the natural drainage regime of the undeveloped site, the WG 'Statutory standards for SuDS' states the following (consistent with the Building Regulations H3 hierarchy):

S1 Surface water runoff destination

Priority Level 1: Surface water runoff is collected for use; Priority Level 2: Surface water runoff is infiltrated to ground; Priority Level 3: Surface water runoff is discharged to a surface water body; Priority Level 4: Surface water runoff is discharged to a surface water sewer, highway drain, or another drainage system; Priority Level 5: Surface water runoff is discharged to a combined sewer.

7.2.2 The hierarchy is discussed below in relation to the site.

(i) Collection for Reuse

- 7.2.3 The proposals are for a solar farm development which will mostly be unmanned. Under Paragraph G1.4 of the WG 'Statutory standards for SuDS', the exception of "there is no foreseeable demand for non-potable water on the site throughout its design life" is applicable.
- 7.2.4 The collection of surface water runoff for re-use is therefore not considered further in this assessment.

(ii) Infiltrated to Ground

7.2.5 The soakage testing undertaken by CC Ground Investigations in June 2020 found that the site had poor infiltration potential, therefore ruling out infiltration as a means of discharge of surface water runoff from the site. A copy of the soakaway results is provided in Appendix C.

(ii) Discharge to a Surface Water Body or Watercourse

7.2.6 There are two no. ordinary watercourses running between or on the boundaries of the parcels and it is therefore proposed to discharge surface water runoff from the site to these receptors.

7.3 Design Criteria and Outline Surface Water Drainage Strategy

- 7.3.1 The nature of the proposed Solar park is such that the majority of the site will remain as greenfield land, retaining the existing drainage regime. The exceedance in surface water runoff will come from the minor increase in impermeable area from the 5no. Inverter Cabins (0.015ha) and the Control Building (0.002ha) and rack supports (0.049ha 0.16sqm per support and 4 supports per rack). The total impermeable area in this assessment is **0.066ha**.
- 7.3.2 The new onsite access track construction is proposed to comprise Type 1 and Type 2 Aggregate with a Geotextile membrane. It has been assumed that due to the nature of the track, it will have low vehicular usage and thus low compaction. It has therefore been taken as permeable and has not been considered further in the drainage calculations.
- 7.3.3 The change in run-off characteristics of each parcel of land arising from the introduction of small areas of impermeable surface is in effect zero as the percentage of the parcels changed from greenfield to impermeable is less than 1% of the total parcel areas.
- 7.3.4 It is proposed to manage surface water runoff from each parcel via shallow boundary swales with a 100mm diameter piped outfall to the nearest ditch as shown on the sketch in Appendix D.
- 7.3.5 The WG Statutory Standard S2 states the following in relation to surface water runoff hydraulic control:

"1) Surface water should be managed to prevent, so far as possible, any discharge from the site for the majority of rainfall events of less than 5mm.

2) The surface water runoff rate for the 1 in 1 year return period event (or agreed equivalent) should be controlled to help mitigate the negative impacts of the development runoff on the morphology and associated ecology of the receiving surface water bodies.

3) The surface water runoff (rate and volume) for the 1% (1 in 100 year) return period event (or agreed equivalent) should be controlled to help mitigate negative impacts of the development on flood risk in the receiving water body.

4) The surface water runoff for events up to the 1% (1 in 100 year) return period (or agreed equivalent) should be managed to protect people and property on and adjacent to the site from flooding from the drainage system.

5) The risks (both on site and off site) associated with the surface water runoff for events greater than the 1% (1 in 100 year) return period should be considered. Where the consequences are excessive in terms of social disruption, damage or risk to life, mitigating proposals should be developed to reduce these impacts.

6) Drainage design proposals should be examined for the likelihood and consequences of any potential failure scenarios (e.g. structural failure or blockage, and the associated flood risks managed where possible."

7.3.6 The existing pre-development greenfield runoff rates for 1ha has been calculated using the FEH 2008 Method (FEH2022 rainfall data and point descriptors). A copy of the calculations is provided in **Appendix D**.

- 7.3.7 The equivalent greenfield runoff rate for the impermeable area would be very small (0.5 l/s or less) and therefore it is not feasible or appropriate to restrict the runoff from the swales as the risk of blockage to the pipe or flow control would be unacceptable.
- 7.3.8 It should also be noted that the swales will also receive the runoff from the fields/parcels themselves however their purpose is to be designed to accommodate the runoff from the impermeable areas (i.e. additional runoff that is anticipated to be produced over the existing greenfield scenario).
- 7.3.9 The outfalls from the swales to the receiving ditches/watercourse are proposed to be 100mm diameter pipes as a practical solution to restricting the flow and in line with the 'agricultural' nature of the land drainage. The greenfield runoff rate for each parcel area (defined by existing topography) is provided in Table 8.2.

Return Period	Greenfield Runoff Rate (I/s)			
Return Period	Parcel West (3.2ha) Parcel South (5.4ha)		Parcel East (3.4ha)	
1 in 1 year	24.0	40.6	25.5	
Q _{BAR}	30.8	52.0	32.7	
1 in 30 year	61.0	103.0	64.8	
1 in 100 year	74.6	125.8	79.2	

Table 7.1: Existing Greenfield Runoff Rates

- 7.3.10 The MicroDrainage results in **Appendix D** shows that the outflow from each parcel (impermeable areas only) for the 1 in 100 annual probability +40% allowance for climate change rainfall event is as follows:
 - Parcel West (0.017ha): 8.6 l/s
 - Parcel South (0.031ha): 8.7 l/s
 - Parcel East: (0.018ha): 7.3 l/s
- 7.3.11 As outlined in Section 4, the appropriate climate change allowances for peak rainfall intensity are +20% and +40% for the site.
- 7.3.12 The proposed surface water drainage system has been designed with no flooding up to and including the 1 in 100 annual probability +40% allowance for climate change rainfall event as shown in the MicroDrainage results in **Appendix D**. Additional capacity is provided for the inclusion of the wider extreme event overland flows from the fields.
- 7.3.13 The swales will be 0.15-0.23m deep with a 0.15-0.40m base width and a 1:4 side slope.
- 7.3.14 The excavation and laying of connecting and outfall pipes will take consideration of the presence of tree stems/roots.

7.4 Effect of Solar Panels on Surface Water Runoff

7.4.1 There is some debate over whether the installation of solar farms affects the surface water runoff regime across a site. In theory, the underlying greenfield site and its ability for runoff to percolate/flow overland at a similar rate is retained for a solar park in comparison to, for example the construction of a residential or commercial development where roof and other impermeable

surfacing change the runoff dynamics at the site and require surface water management to mitigate any adverse impacts.

7.4.2 A paper entitled '*Hydrologic Response of Solar Farms*' by Cok and McCuen (2013, American Society of Civil Engineers) analyses the hydrologic effects of solar farm installation and simulating runoff both for pre- and post-panelled conditions, and found that:

"Using sensitivity analyses, the solar panels themselves did not have a significant effect on the runoff volumes, peaks, or times to peak. However, if the ground cover under the panels is gravel or bare ground, owing to design decisions or lack of maintenance, the peak discharge may increase significantly with storm-water management needed.

In addition, the kinetic energy of the flow that drains from the panels was found to be greater than that of the rainfall, which could cause erosion at the base of the panels. Thus, it is recommended that the grass beneath the panels be well maintained or that a buffer strip be placed after the most downgradient row of panels."

- 7.4.3 It is proposed as part of a maintenance regime for the site that the areas between the panels are regularly inspected and seeded to maintain grassland cover so that the natural surface and runoff regime is retained.
- 7.4.4 It is therefore concluded that the introduction of the solar panels does not significantly change the run-off characteristics of the overall site. Any local concentration of run-off from the panels is managed by a combination of retaining the existing ground cover and the swales for extreme events.

7.5 Designing for Exceedance

7.5.1 Paragraph G2.37 of the SuDS Guidance states that:

"Extreme events exceeding the design event (usually the 1% - 1 in 100 year return period) could occur and may result in overland flows within the site, onto the site and from the site to adjacent areas. The duration of flooding, maximum depth, maximum velocity and the route of flood flows should be established and managed so as to mitigate the flood impact to people and property."

- 7.5.2 The inverter cabins will have a suitable freeboard above external ground level to mitigate the residual risk of surface water ingress during extreme rainfall events.
- 7.5.3 The swales will provide attenuation for the solar panel array supports and the inverter/control cabin roofs. They will also receive surface water runoff from the fields themselves. When the swales are at capacity, the runoff from the fields will flow overland towards the field boundary ditches as per the existing drainage regime.

7.6 Other Considerations

Pollution Control

- 7.6.1 Appropriate pollution control measures will be included in the surface water drainage system to minimise the risk of contamination or pollution entering the receiving systems from surface water runoff from the development.
- 7.6.2 The management of drainage within the temporary construction compound will be managed through a Construction Environmental Management Plan (CEMP), details of which will be provided at the detailed design stage prior to any construction commencing.

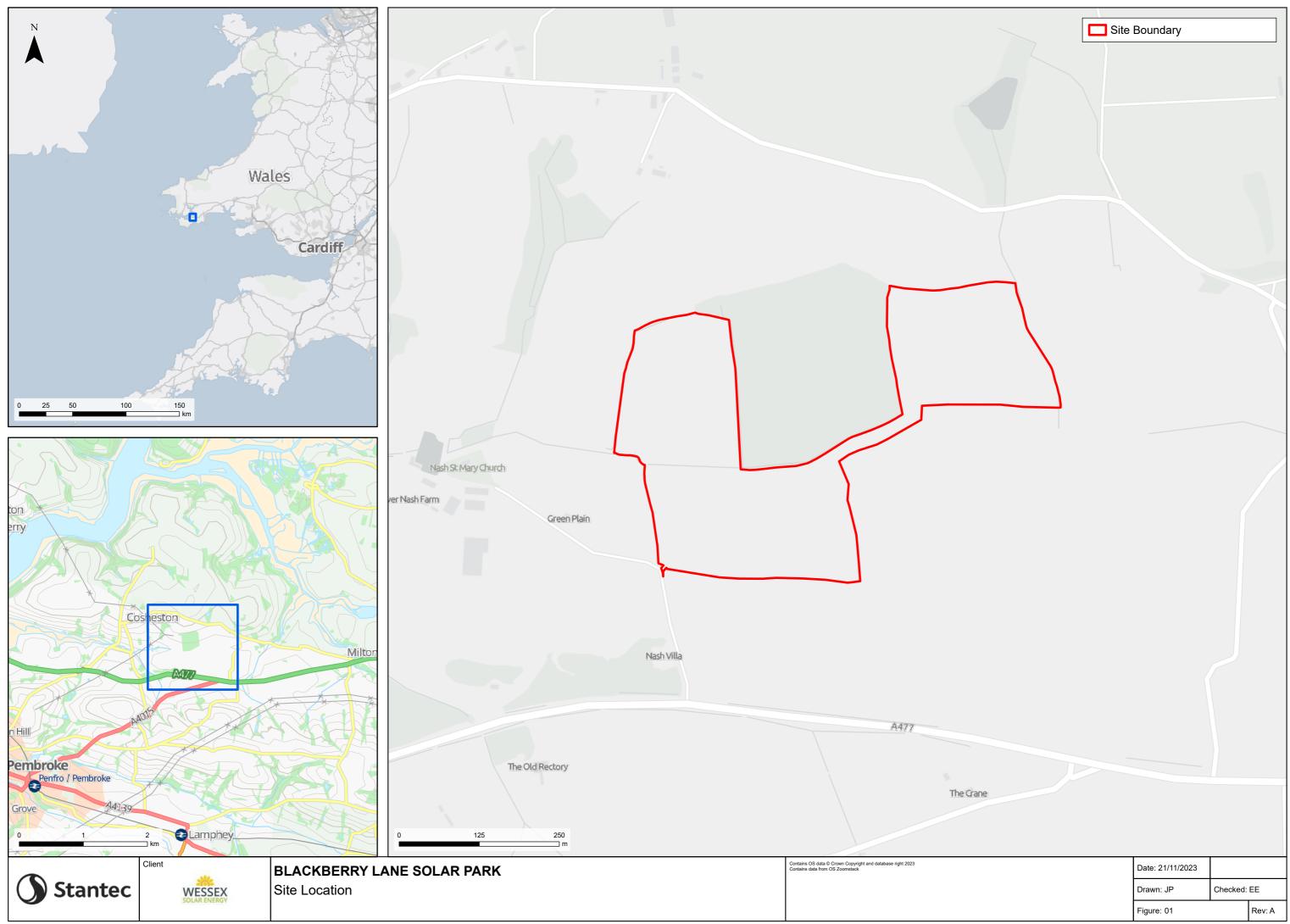
7.6.3 The surface water runoff from the site will be from roofs and solar panel arrays and will therefore be a very low pollution risk. Swales will treat runoff before it is discharged to the receptor.

Adoption and Management

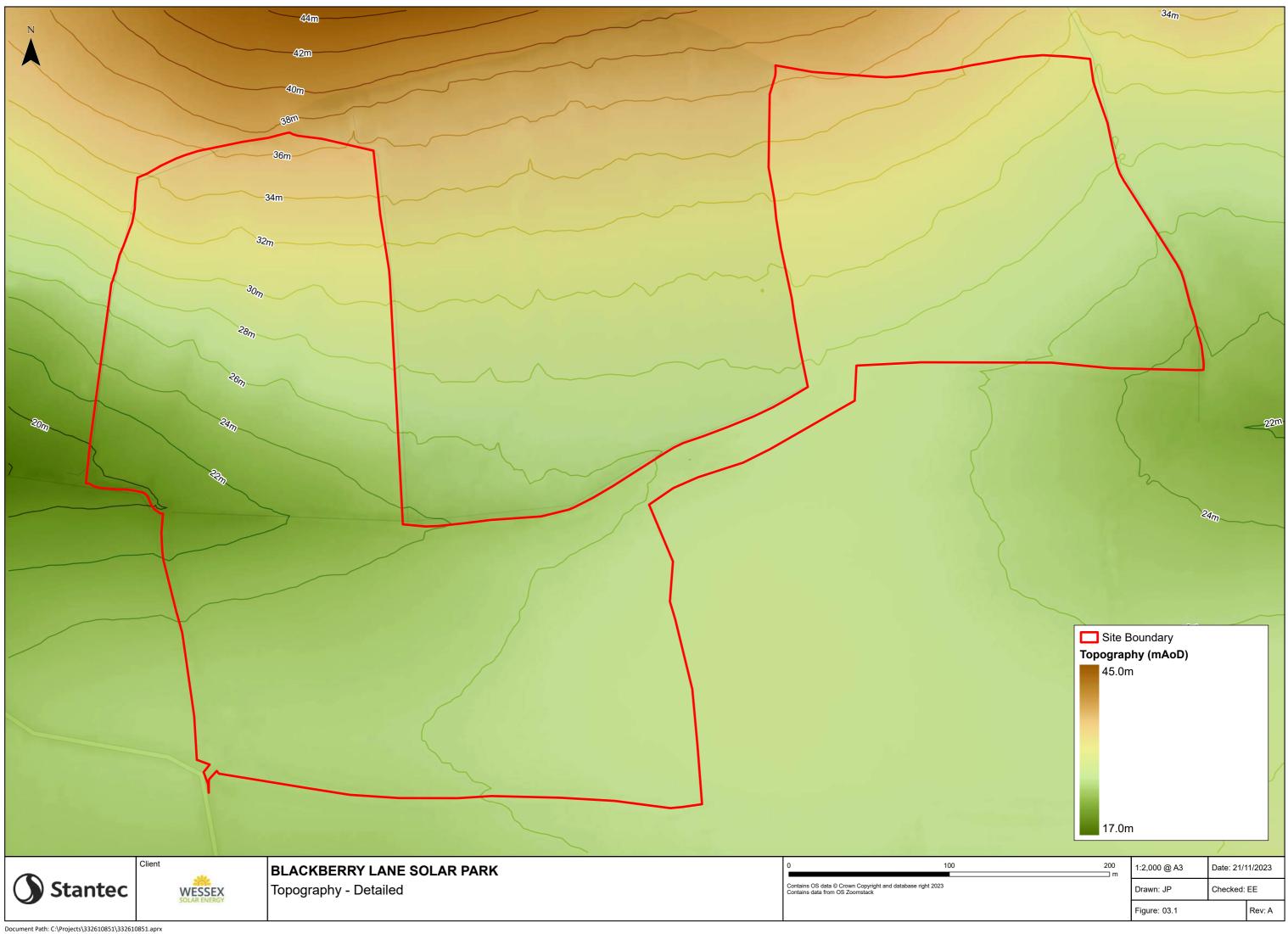
- 7.6.4 The ongoing management and maintenance of the proposed surface water management systems will fall under the responsibility of WSE as the owners and operators of the site.
- 7.6.5 Long term management of surface water drainage assets, including any SuDS components, is essential to ensure they continue to function to their design standard. As such, a management and maintenance plan will be developed to ensure the systems continue to work effectively.
- 7.6.6 The final strategy for adoption of SuDS and the SuDS maintenance plan, including a maintenance schedule and details of easements and outfalls for the drainage system, will be produced at the detailed design phase.

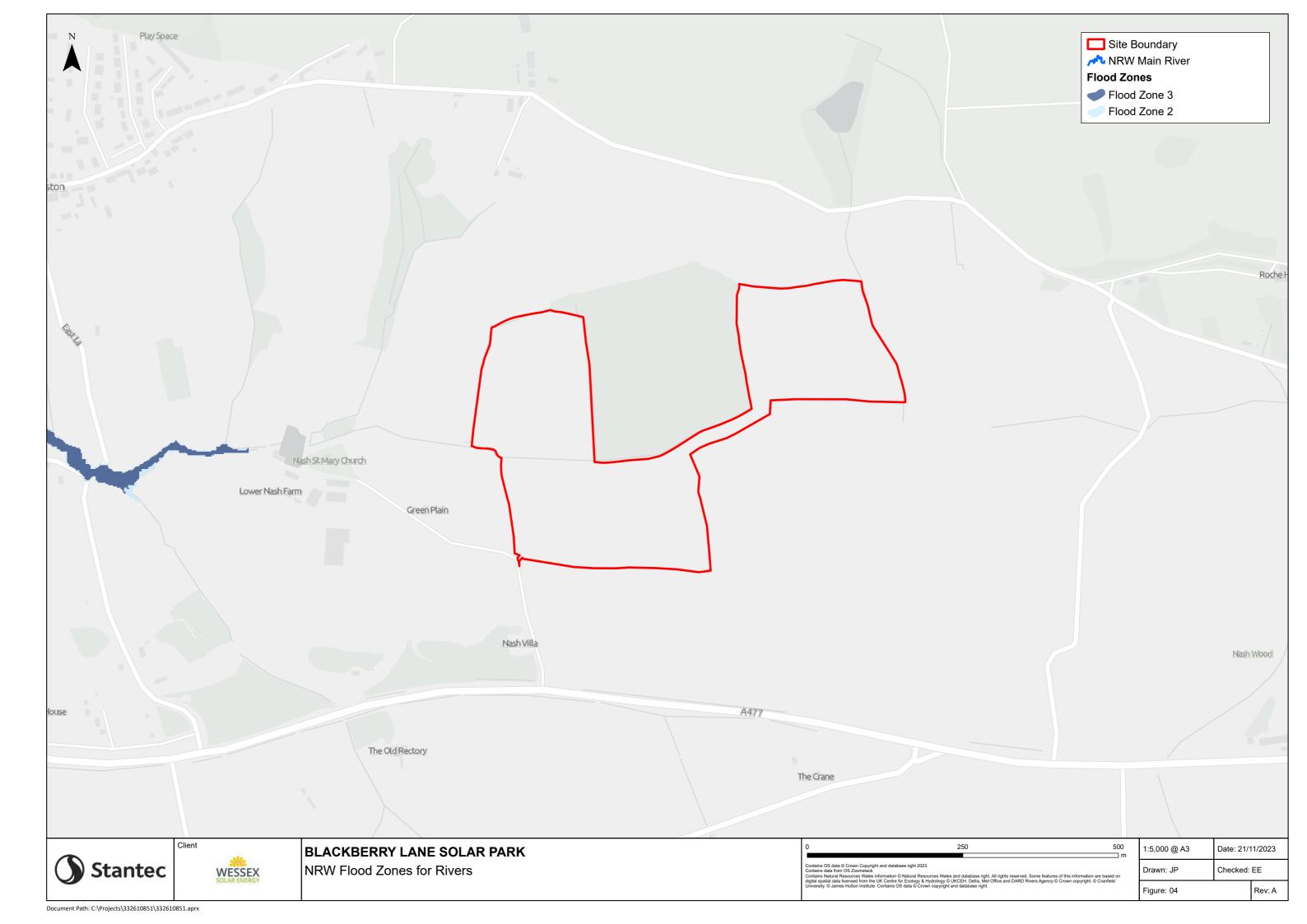
8 Residual Risk

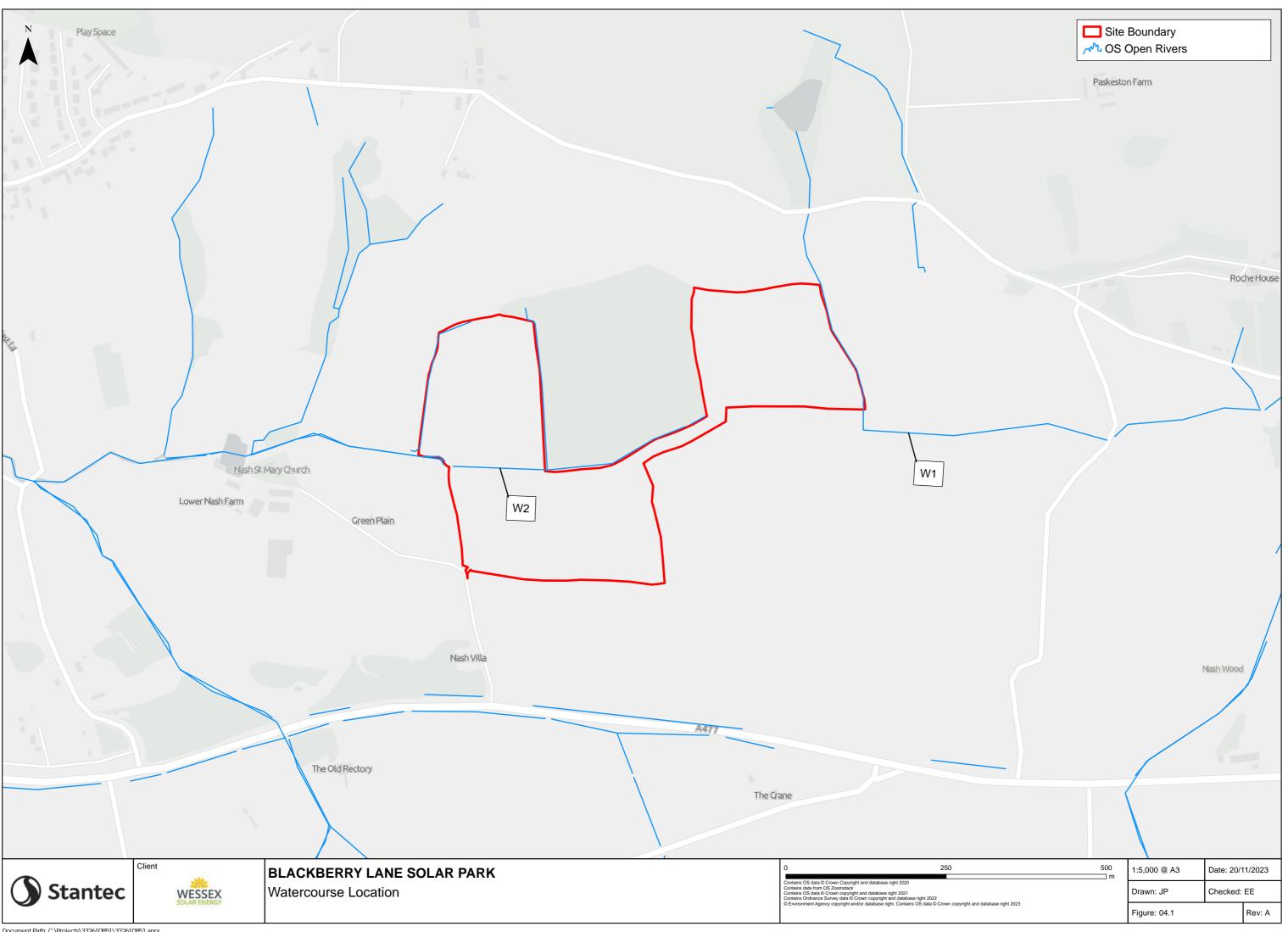
- 8.1.1 It is difficult to completely guard against flooding since extreme events greater than the design standard event are always possible; however, it is practicable to minimise the risk by allowing a substantial freeboard (safety margin) and by using suitable construction and management techniques.
- 8.1.2 There remains a residual risk of surface water/pluvial flooding due to the surcharging of surface water management systems in exceedance events. Regular inspection and maintenance of any drainage systems should also be undertaken to further mitigate this residual risk.
- 8.1.3 The proposed inverter cabins and control building will have a suitable freeboard (minimum of 150mm above external ground level).
- 8.1.4 Construction methodology will be agreed at the detailed design stage with a CEMP to be provided prior to any construction commencing.
- 8.1.5 As such, the residual risk is considered to be acceptable for the lifetime of the development.

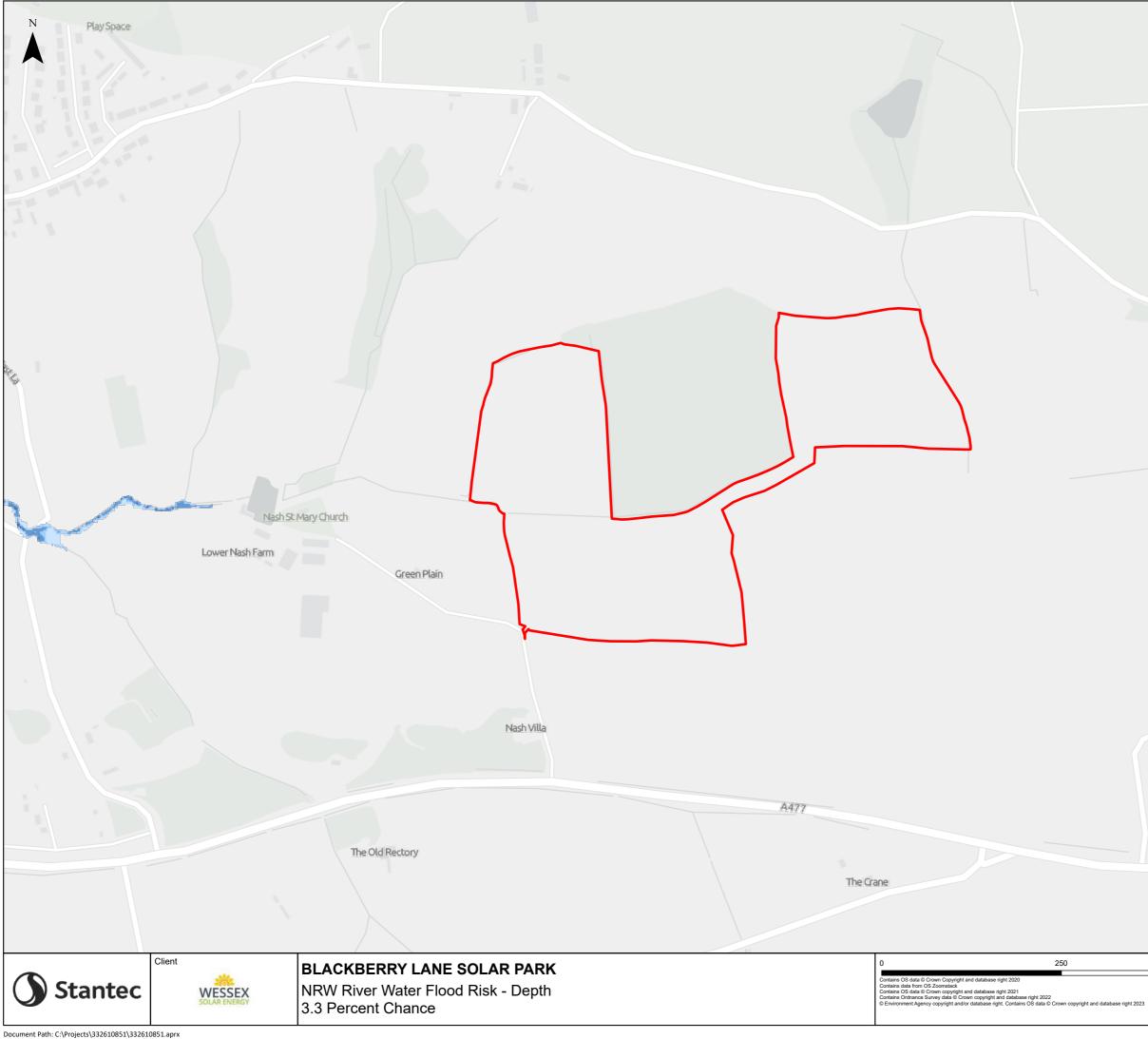

9 Conclusions

- 9.1.1 This Flood Consequences Assessment (FCA) has been prepared by Stantec, on behalf of our client, Wessex Solar Energy, to support a planning application for the construction of a solar farm, on land west of Blackberry Lane, near the village of Cosheston in Pembrokeshire, South Wales.
- 9.1.2 This FCA concludes that:
 - The Welsh Government and Natural Resources Wales DAM's confirms the proposed development is located within Flood Zone A.
 - Flood risk from reservoirs, sewers or groundwater sources is considered to be 'negligible'.
 - The proposed development is categorised as 'less vulnerable' and in accordance with TAN15, the development is considered appropriate for Flood Zone A.
 - Surface water drainage will be provided in the form of swales down slope of the PV panels, which will intercept surface water flows following the existing natural flow paths present on the site. The swales will act to capture and store the water before it is discharged via a piped outfall to the watercourses located within the red line boundary.
 - The proposed inverter cabins and control building will have a suitable freeboard (minimum of 150mm above external ground level).
 - Hence, there will be no increased flood risk to external receptors as part of the development proposals.
- 9.1.3 In conclusion, the proposed development will be safe from flooding and there will be no detrimental impact on third parties. The proposal complies with the TAN15 and local planning policy with respect to flood risk and is an appropriate development at this location.

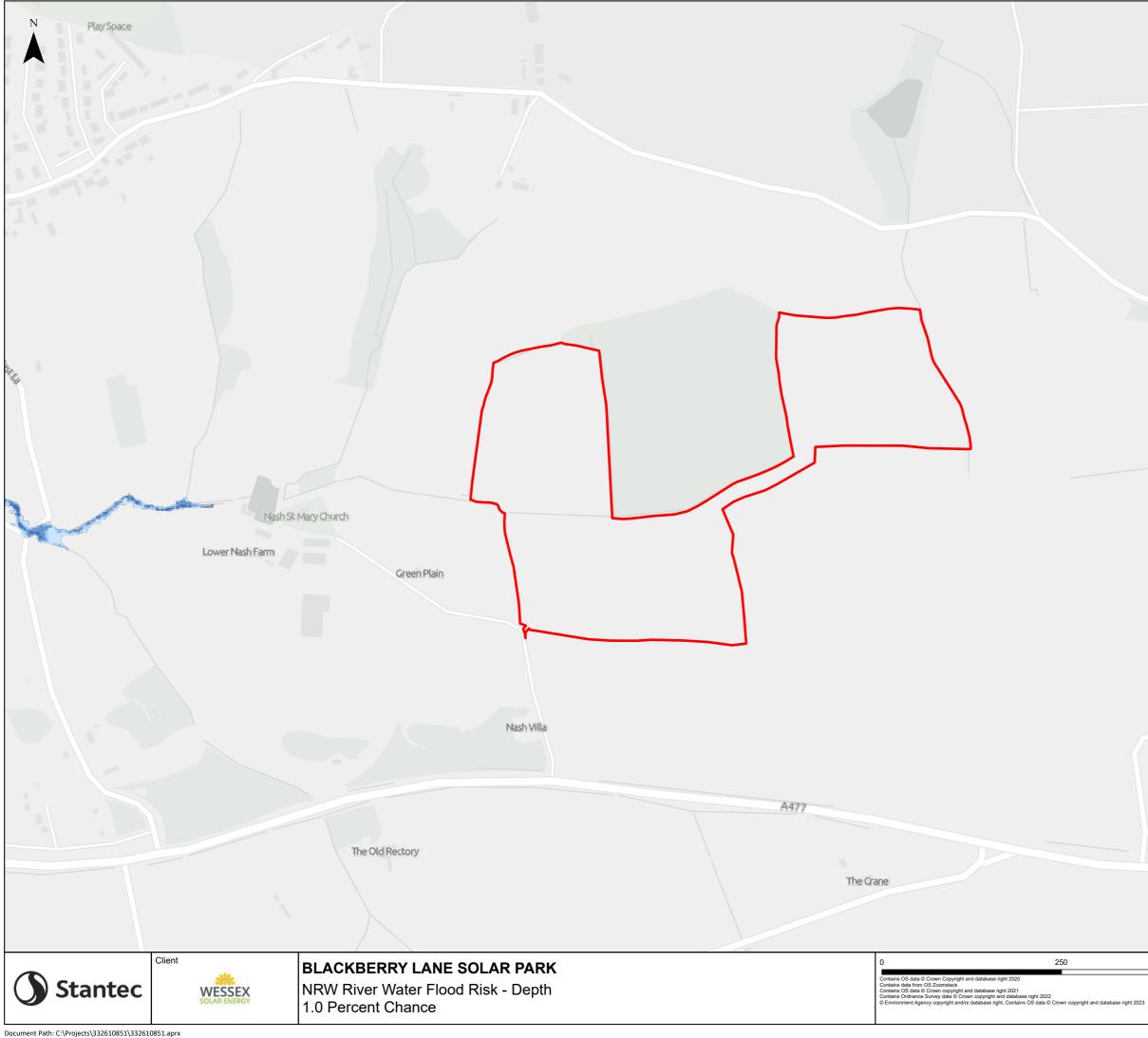


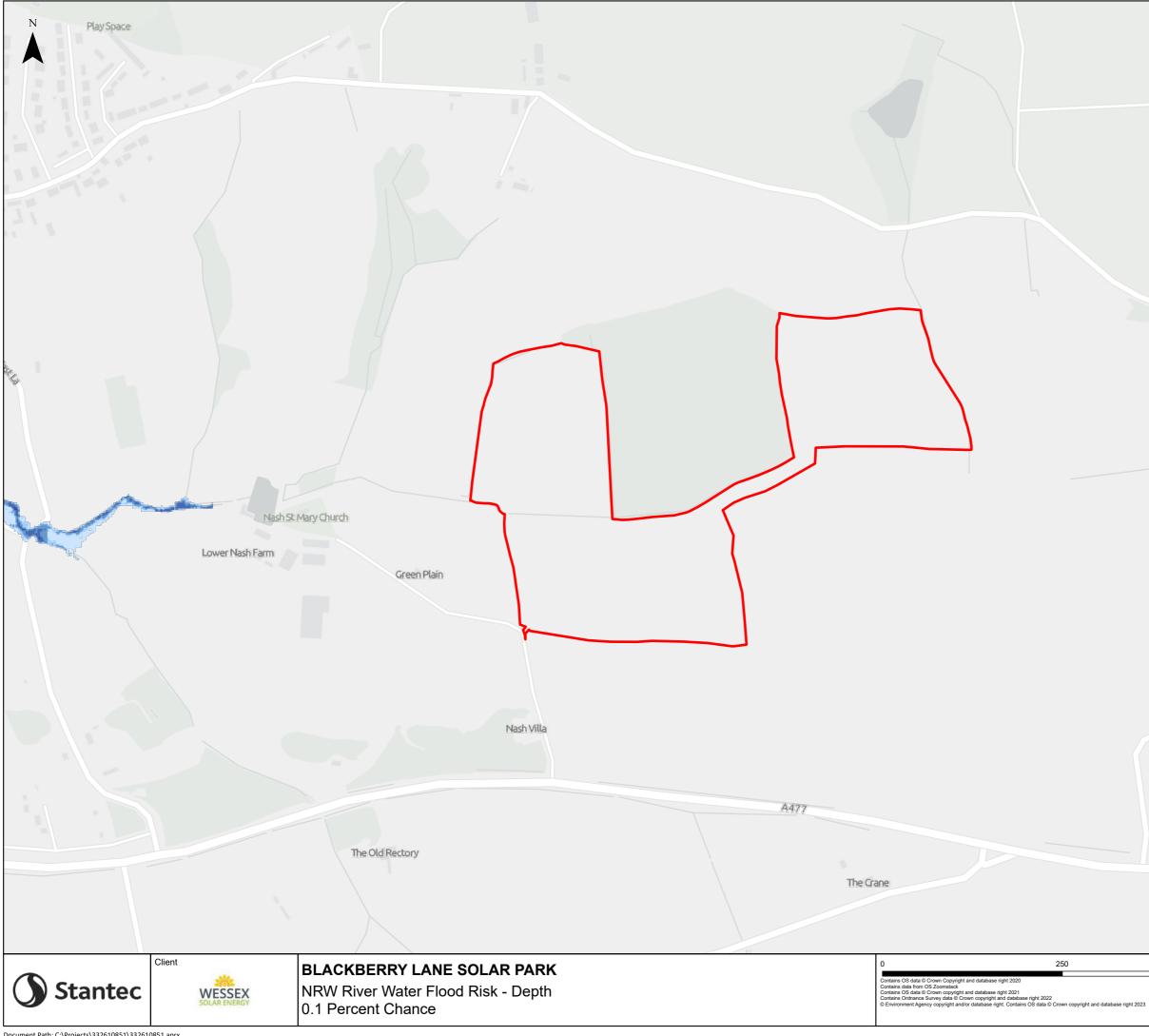

Appendix A NRW Open Source Flood Maps


- Site Location Plan
- Area Topography (LiDAR)
- Watercourse Location
- NRW River Flood Risk Depth
- NRW Flood Zones for Surface Water
- NRW Development Advice Map Zones
- Source Protection Zones
- NRW Recorded Historic Flood Extents

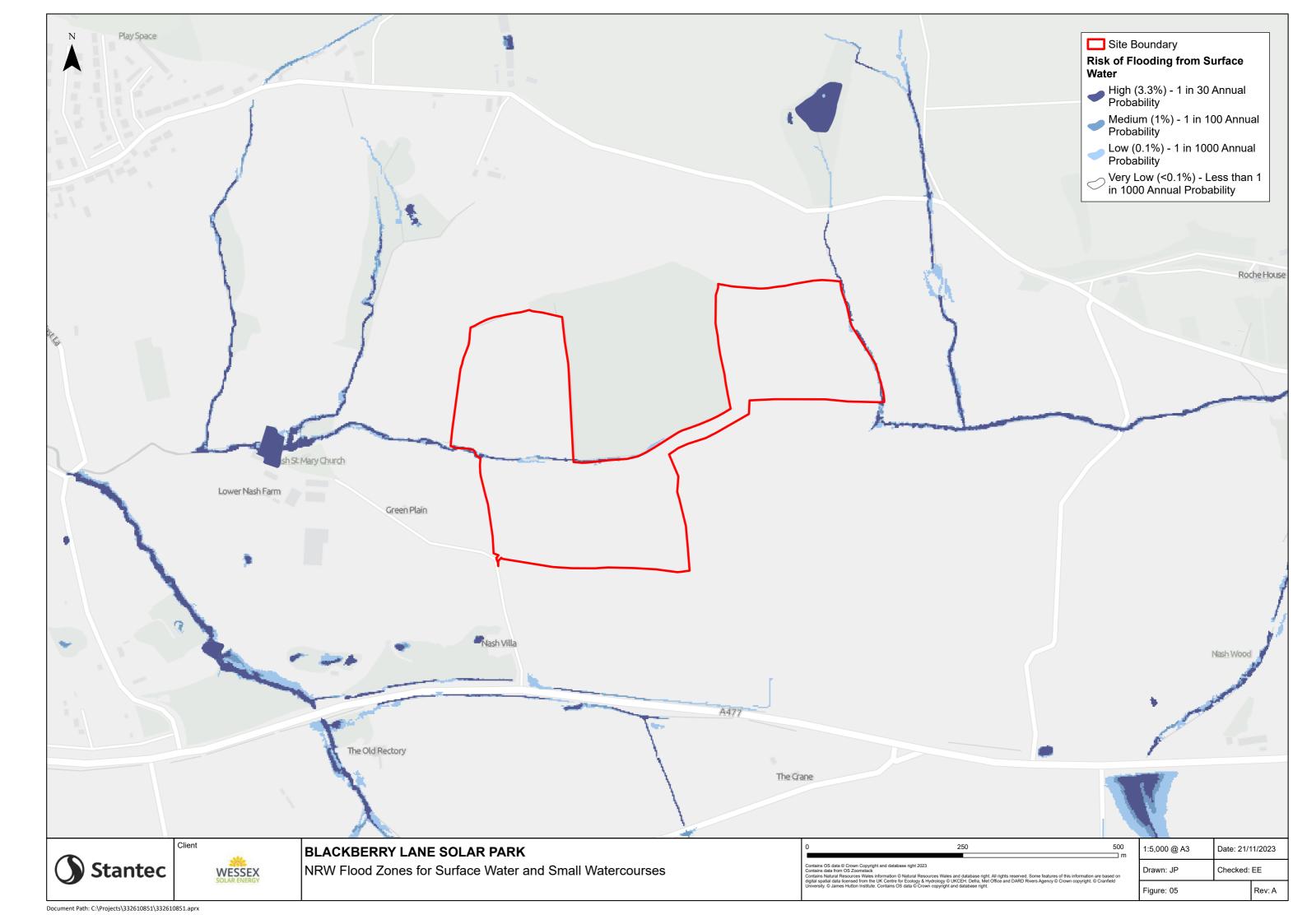


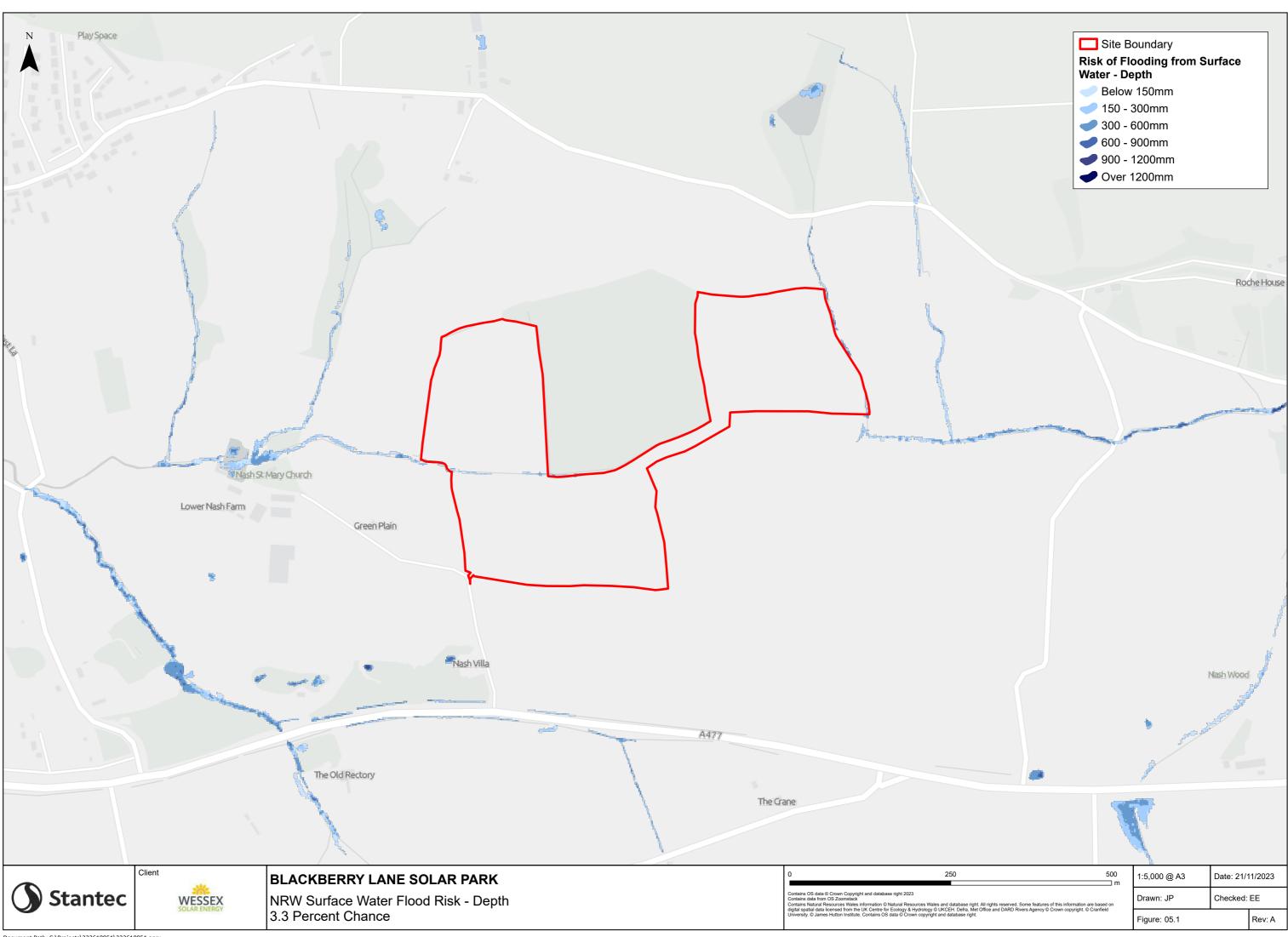
Document Path: C:\Projects\332610851\332610851.aprx

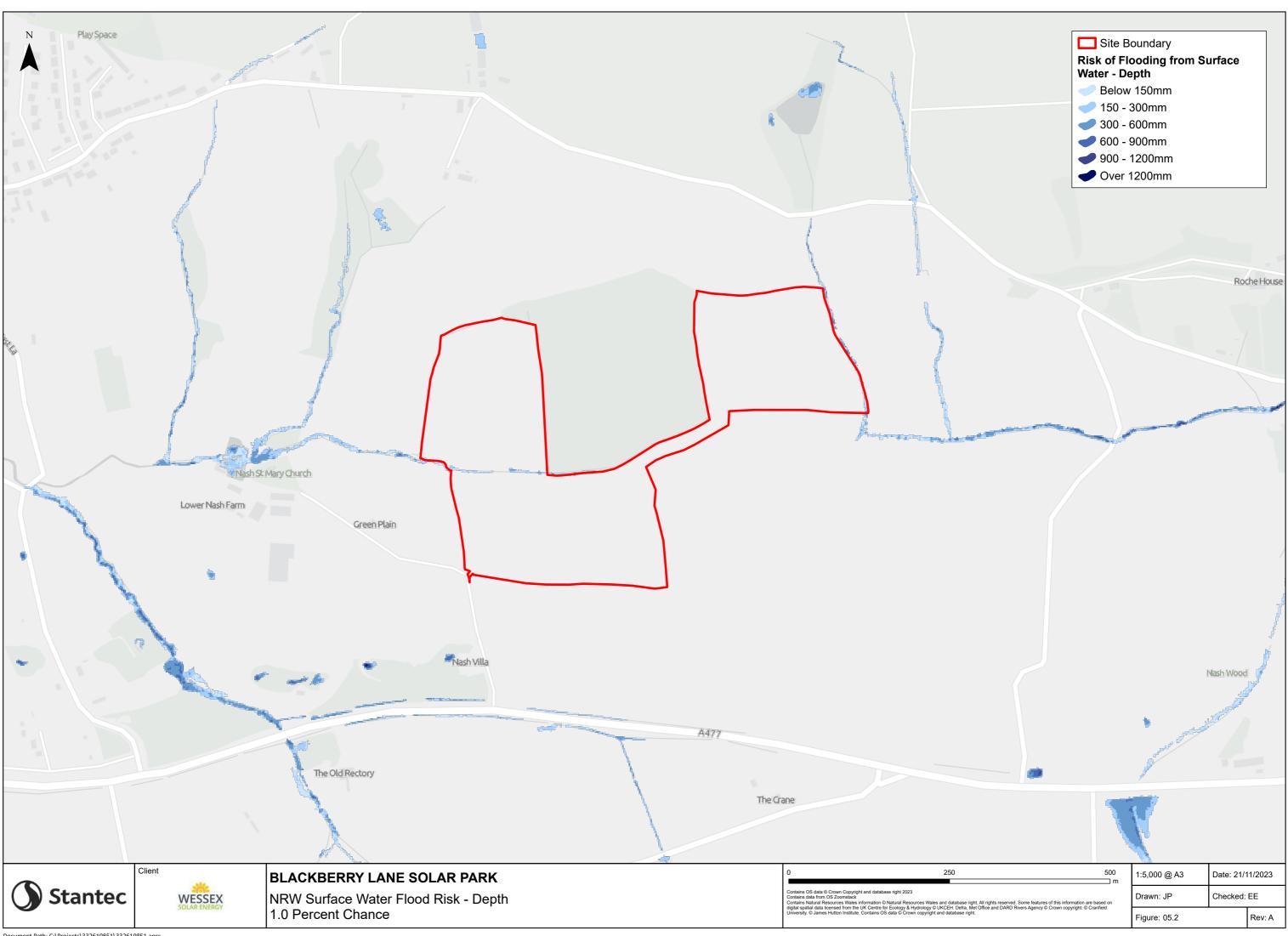


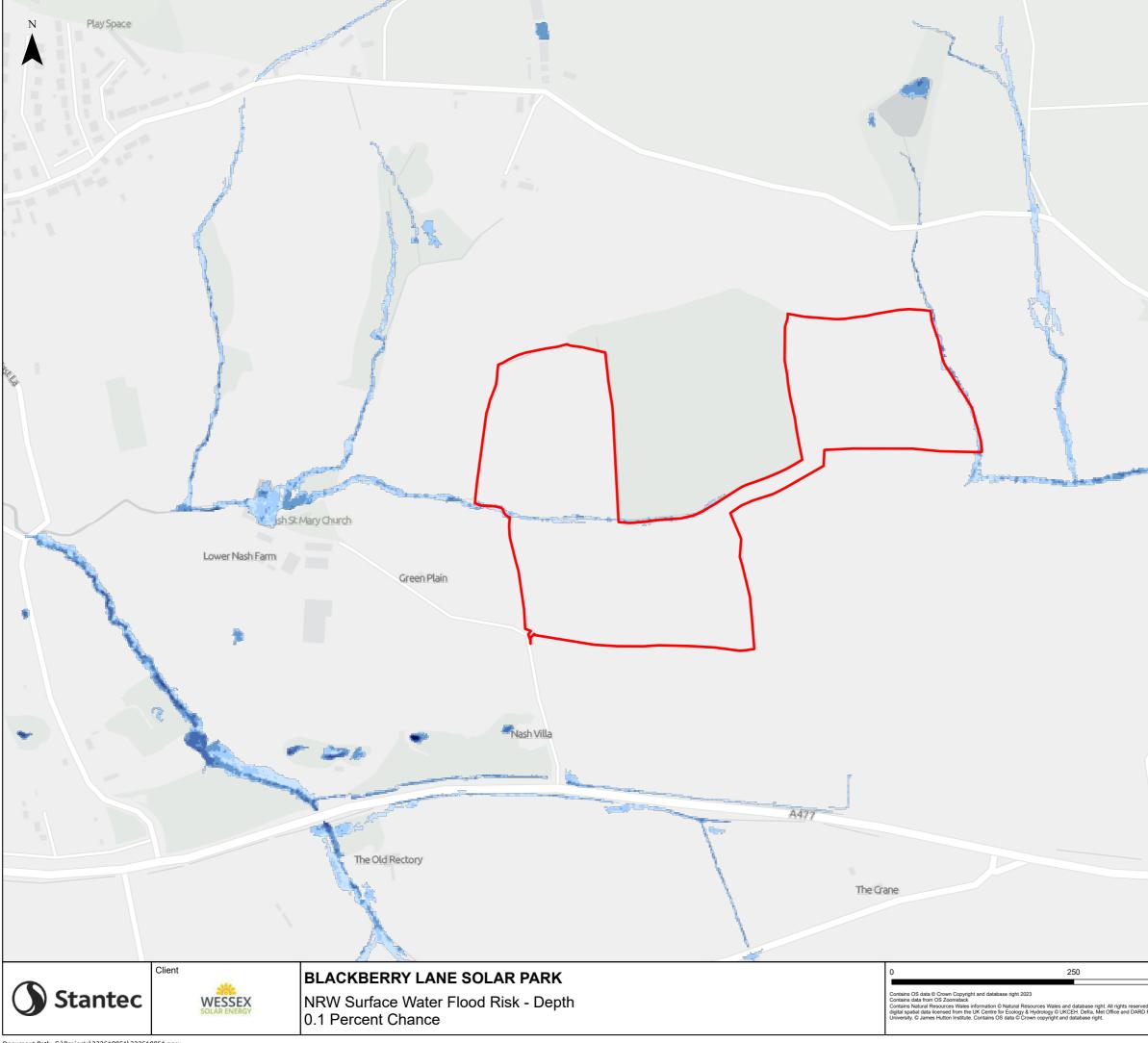


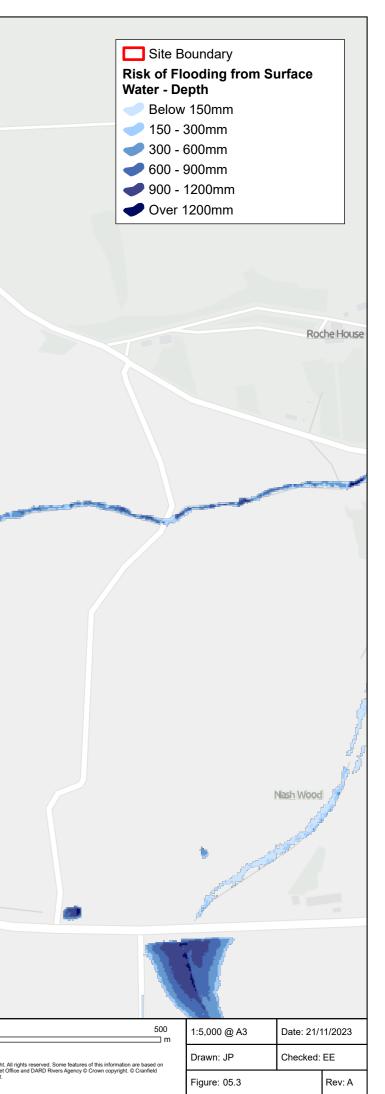
4.2		

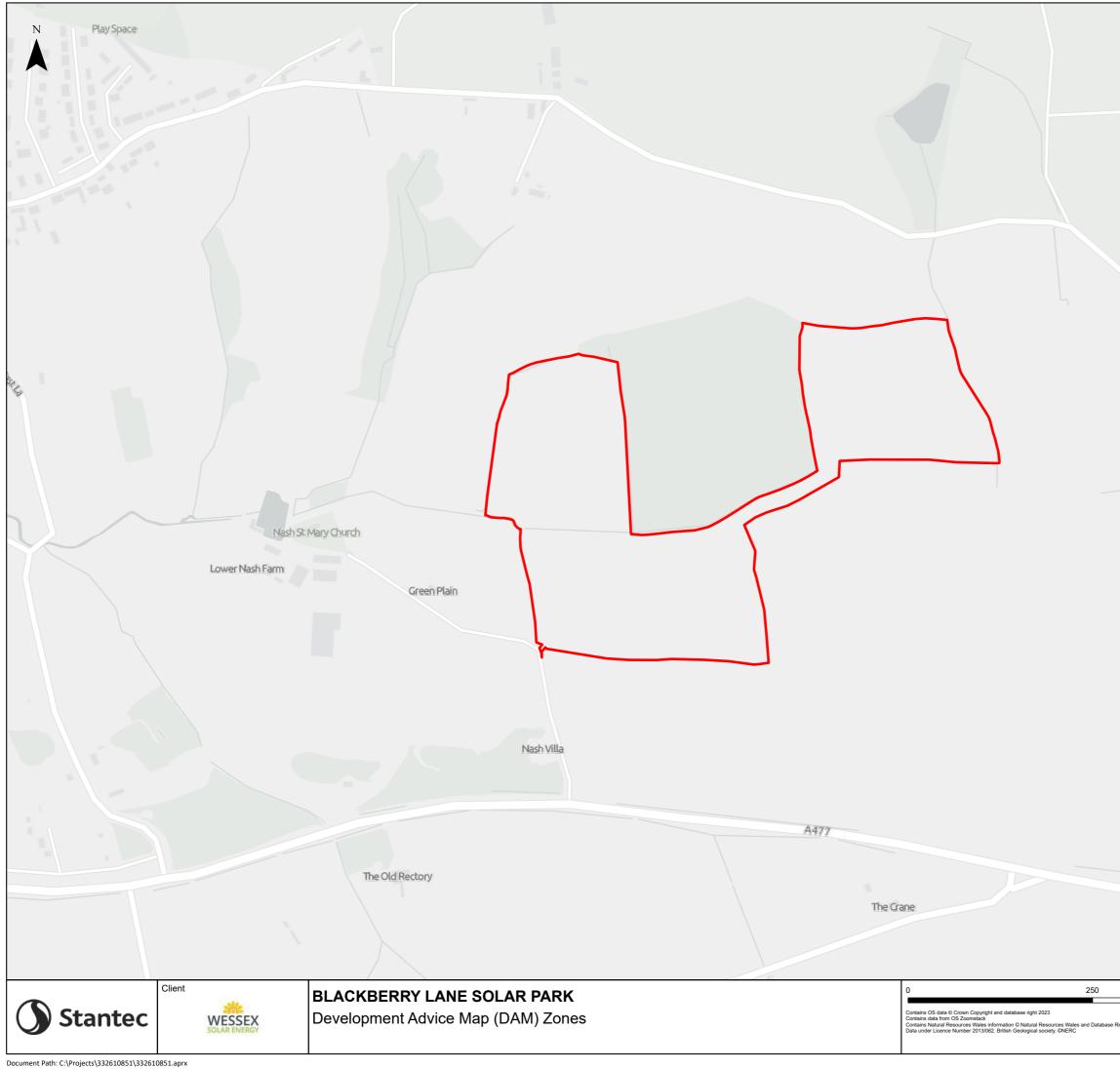


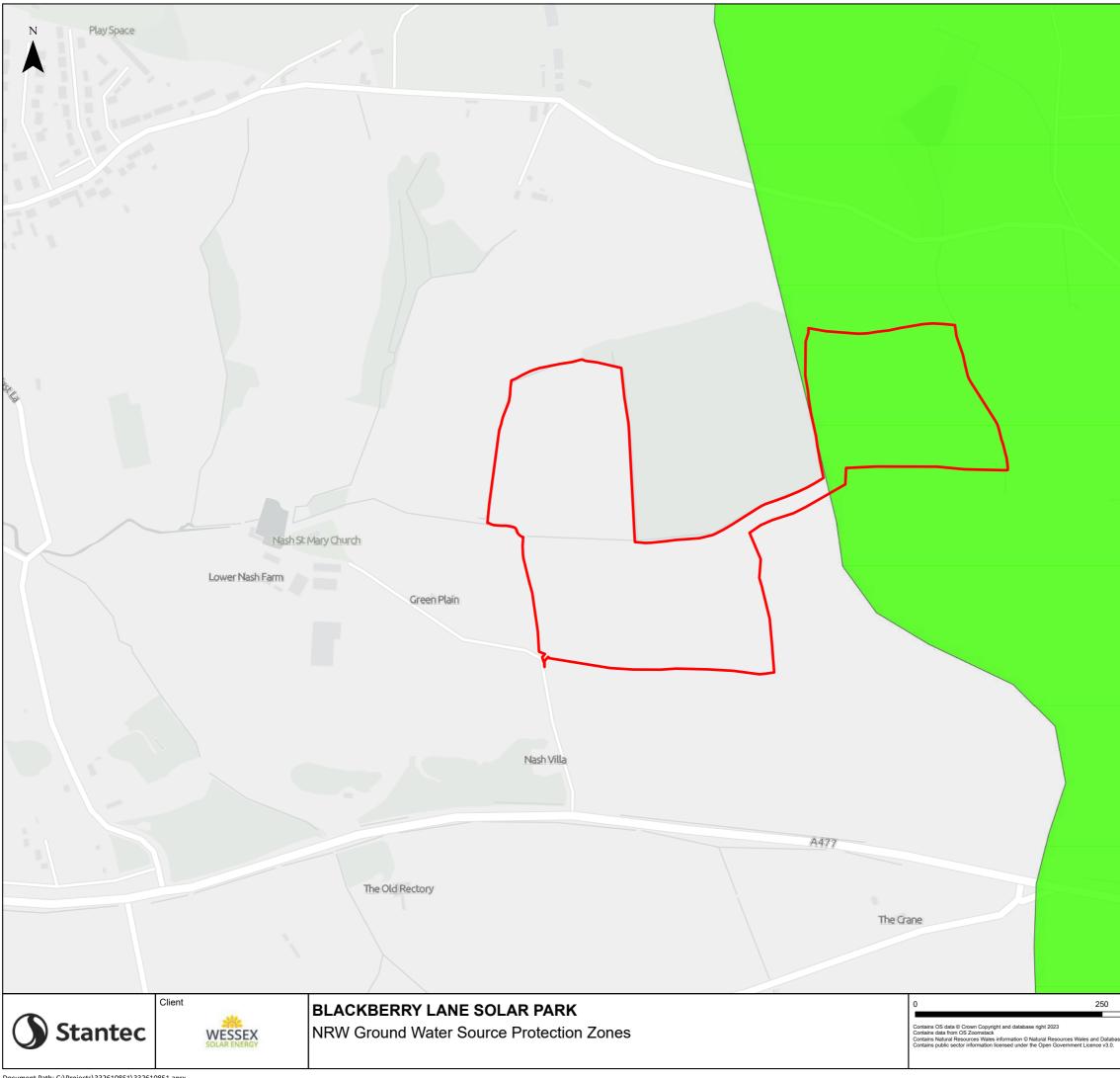

Rev: A



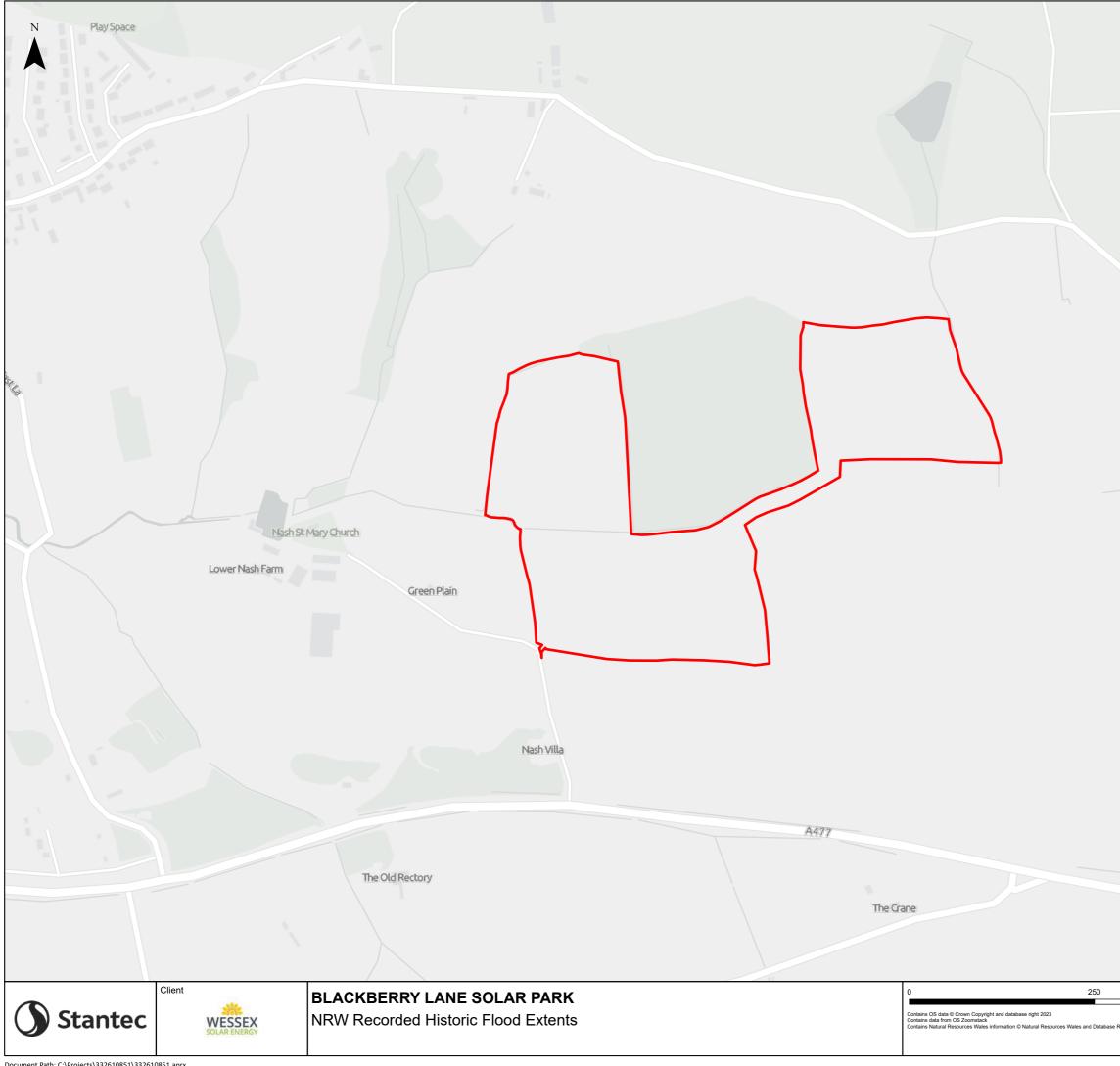

Document Path: C:\Projects\332610851\332610851.aprx





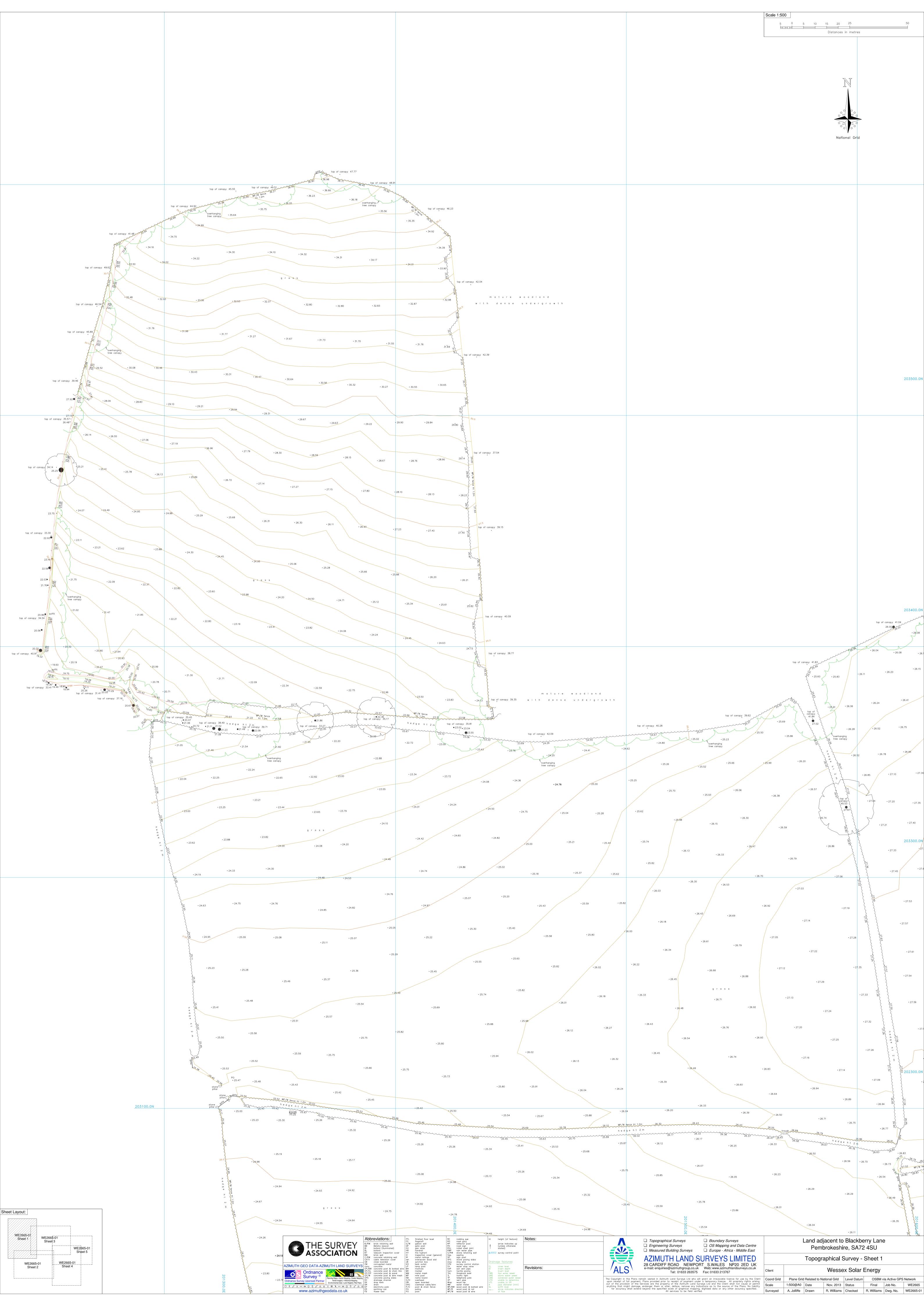


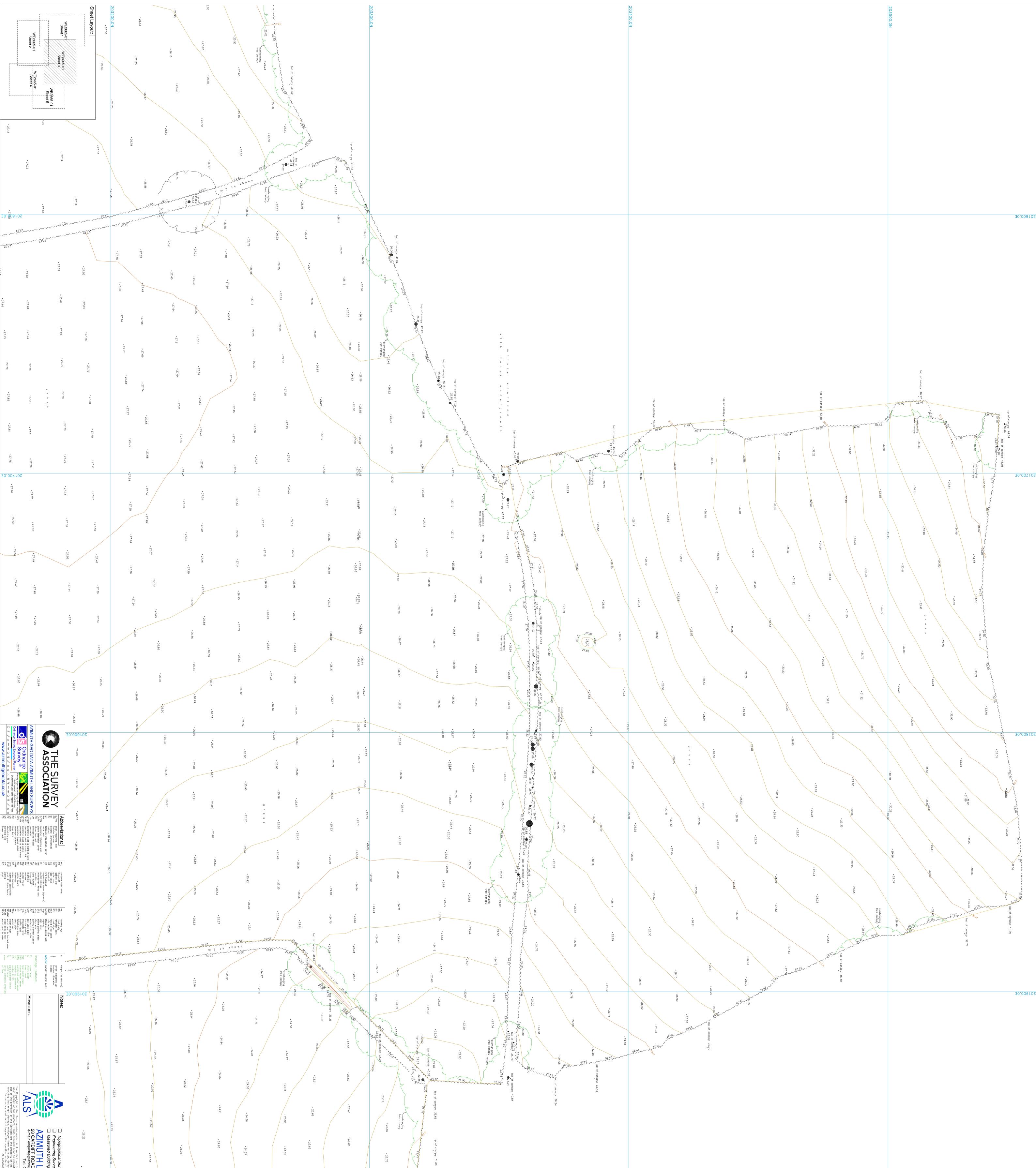
Document Path: C:\Projects\332610851\332610851.aprx



Site Bou	adany	
DAM Zor		
DAM Zor		
DAM Zor		
		Roche House
		_/
		•./
		· · · · · · · · · · · · · · · · · · ·
		/
		Nash Wood
500		Date: 21/11/2023
	1.5 000 @ 42	
m	1:5,000 @ A3	
I m	1:5,000 @ A3 Drawn: JP Figure: 06	Checked: EE Rev: A

	Site B	oundarv		
		e Protection Zor	ne	
	Paskesto	n Farm		
				he House
	500	4.5.000 @ 40	Deta: 01/	1/2022
	m	1:5,000 @ A3	Date: 21/1	
ght. All rights Reserved.		Drawn: JP	Checked:	
		Figure: 07		Rev: A




	Boundary	
	ic Flood Map	
Reco	rded Flood Out	lines
		Roche House
		-/
		•./
		/
		Nash Wood
500	1:5,000 @ A3	Date: 21/11/2023
m	Drawn: JP	Checked: EE
nt. All rights Reserved.		
	Figure: 08	Rev: A

Appendix B Topographic Survey

• Azimuth Land Surveys Ltd. Drawing WE2665-01 & 03 dated November 2013

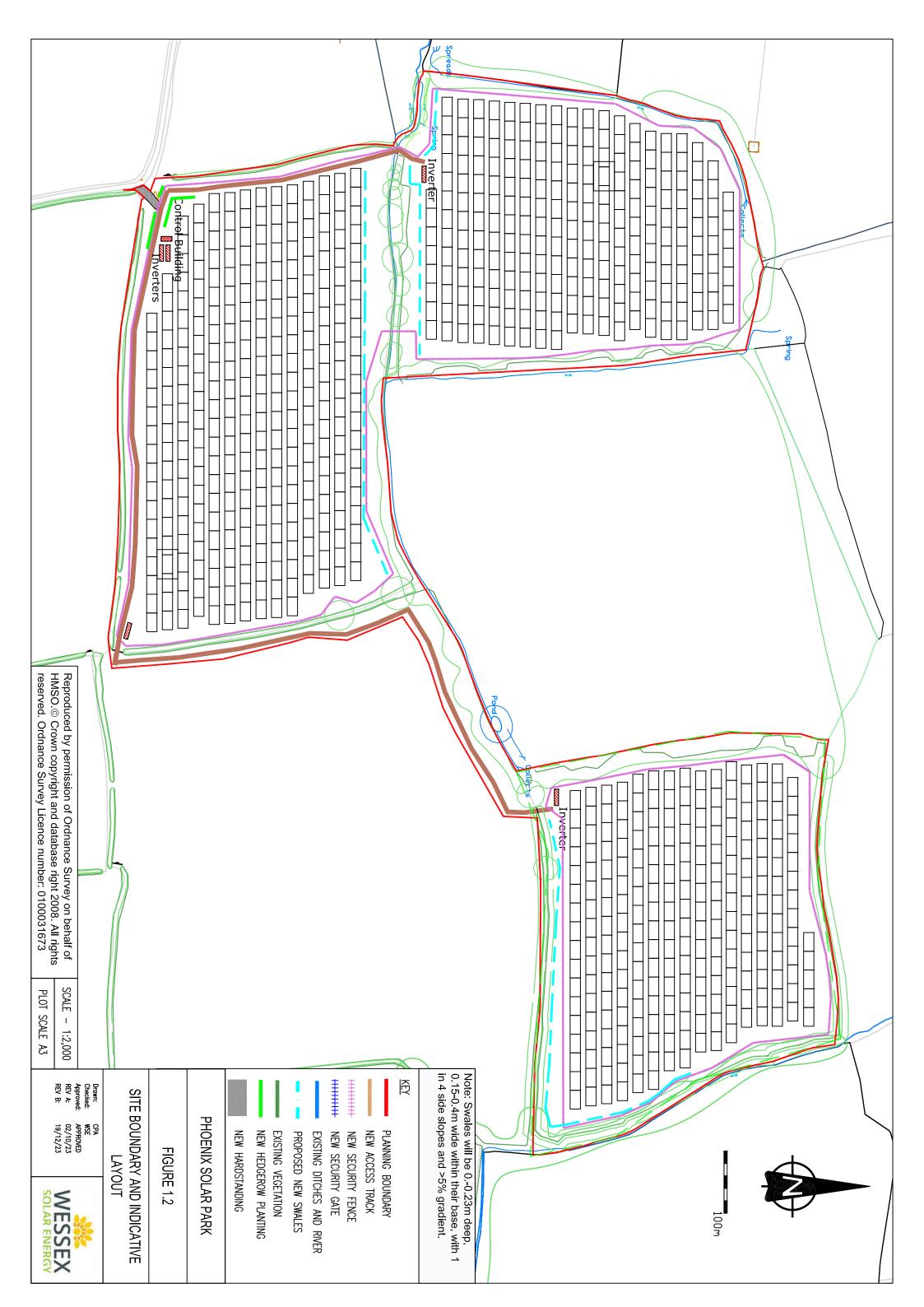
Client Coord Grid Plane Grid F Scale 1:500@A0 I Surveyed A. Jolliffe I	AD NEWPORT S.WALES NP20 2ED zimuthgroup.co.uk Web: www.azimuthlandsurveys.c 11: 01633 263575 Fax: 01633 213767 14 Surveys Ltd who will grant an irrevocable licence for use by t d Surveys Ltd who will grant an irrevocable licence for use by t ceipt of poyment under a temporary licence. All propriety rights the Azimuth Land Surveys Ltd and the Client shall not cause o eface, remove any indications as to the source of the Plans. No eface, remove any indications as to the source of the Plans.
Topographical Survey - Sheet 3	Surveys Boundary Surveys OS Mapping and Data Centre ling Surveys Europe - Africa - Middle East
+ 26.75	+ 26.33 + 26.49 + 26.57
+ 25.66 + 25.67 + 25.67 + 25.80 + 25.81 + 26.18 + 26.19 + 26.16 + 26.16	0 + 26.17 + 26.20
.24 +25.19 +25.14 +25.13 +25.17 +25.19	+ 25.23 + 25.68
6 + 24.69 + 24.65 + 24.62 + 24.64 + 24.62	+ 24.73 + 24.75 + 24
27 + 24.20 + 24.16 + 24.14 + 24.11 + 24.08	+ 24.41 + 24.38 + 2
+ 23.61 f i e l d * 23.63 + 23.59 + 23.48 + 23.41	+23.86 +23.80 +23.69 ploughed
+ 22.70 + 22.57 + 22.46 + 22.44 + 22.41 + + 23.25 + 23.19 + 23.11 + 23.00 + 22.91	+ 23.68 + 23.52 + 23.3
+ 22.70 + 21.94 + 21.83 + 2	+ 23.25 + 23.11 + 22.88
	e6 • i t h top of compy 29;65 • 22.69
Vitanoi Gri	
Scale 1:500	

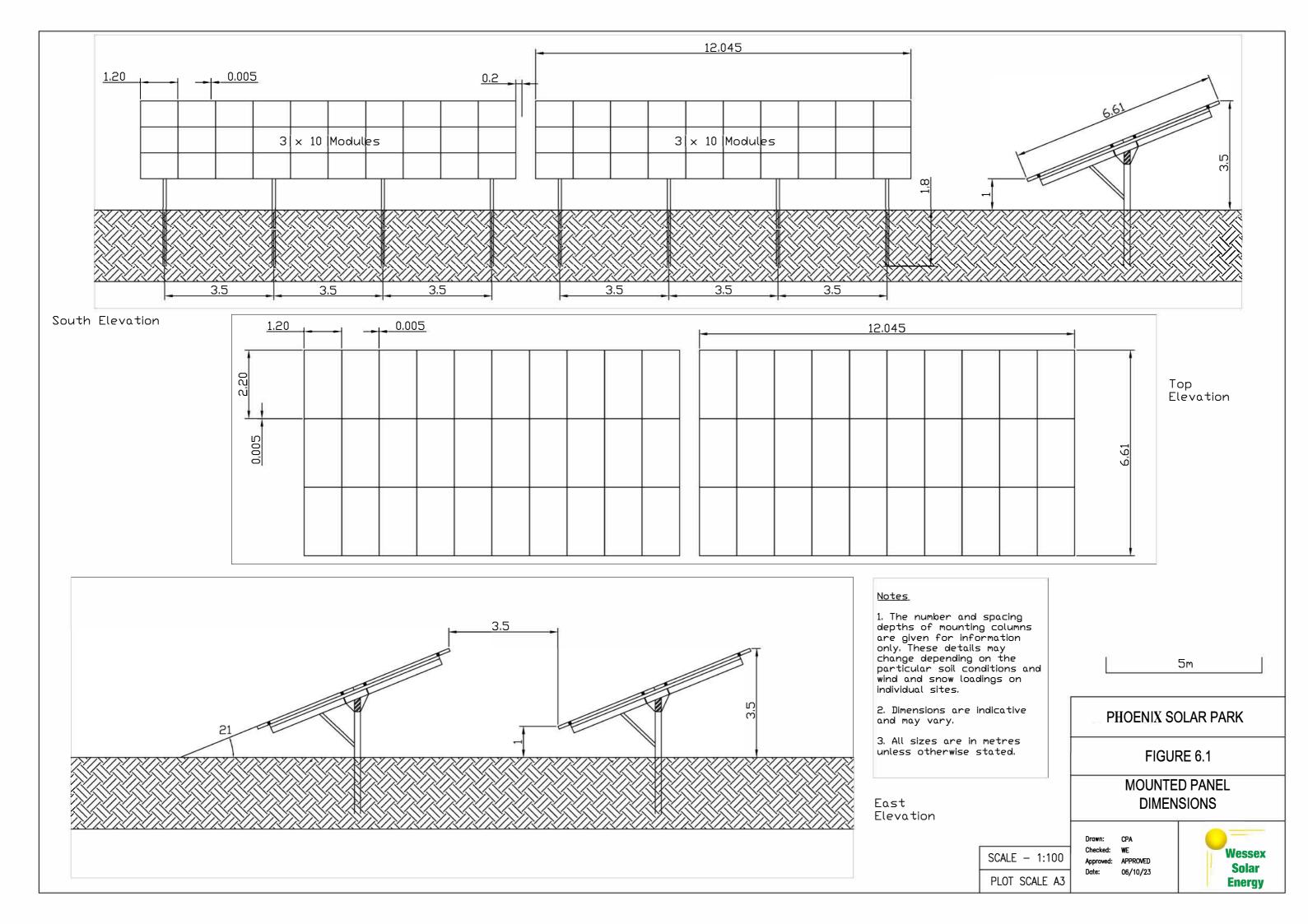
Appendix C Trial Pit Logs

• Soakaway Test Results by CC Ground Investigations Ltd. dated June 2020

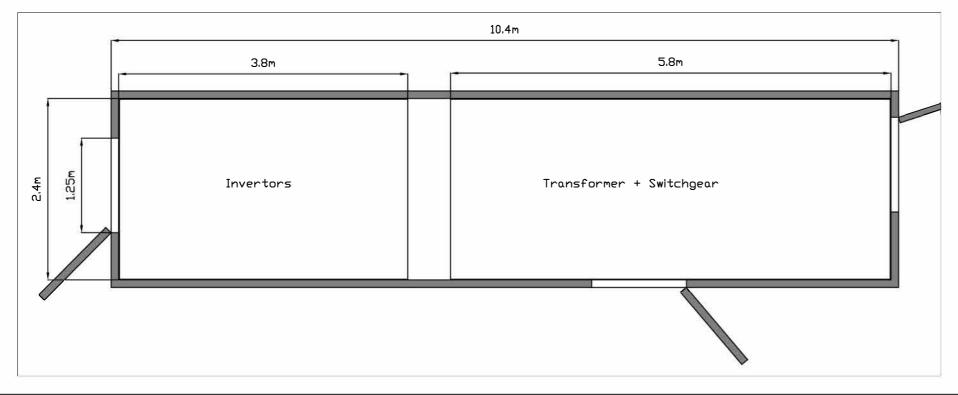
CC GROUND I	NVESTIGATI	ONS LTD									Pit No	
SOAKA											TP4	
Telephone: 01452 739	9165, Fax: 01452 73	39220, Email: info@ccground.o	co.uk						_		Sheet 1 of	1
Project Name:	Blackberry La	ne	Proje	ect No: C	6755						Date 05/06/202	0
Location: Pemb	oroke, Pembro	okeshire									Logged B MM	
Client: Wessex	Solar Power	Ltd									Checked E MA	y
TEST 1:							_				IMIA	
LENGTH	2.00 m						I	ime (m	inutes)			
BREADTH	0.70 m			0) 20	40	60	80	100	120 140	160 180	
DEPTH	2.00 m			0.70				-+		+ +	. 1	
WATER LEVEL	Dry			0.90 -	-	•	•	•	•	•	• •	
FILL LEVEL	0.80 m		Depth to water (m)									
			ter	1.10 -	— · — · -	— · — · -	- · - ·	<u> </u>	· — · —	· · — · — · —	· _ · _ · _	
V _{p75-25}	m³		vai	1.30 -							75% full	
a _{p50}	m ²		5	1.30 -								
			pth	1.50 -	-							
t _{p75-25}	min		å									
				1.70 -	<u> </u>	<u> </u>	- · - ·	<u> </u>	· — · —	··· — · — · —	25% full	
soil infiltration	rate. f	m/s⁻¹		1.90 -	-						2370 101	
		ulate infiltration rate		1.00								
REMARKS:												
Test carried out	t in general a	ccordance with BRE	365 (20	16).								

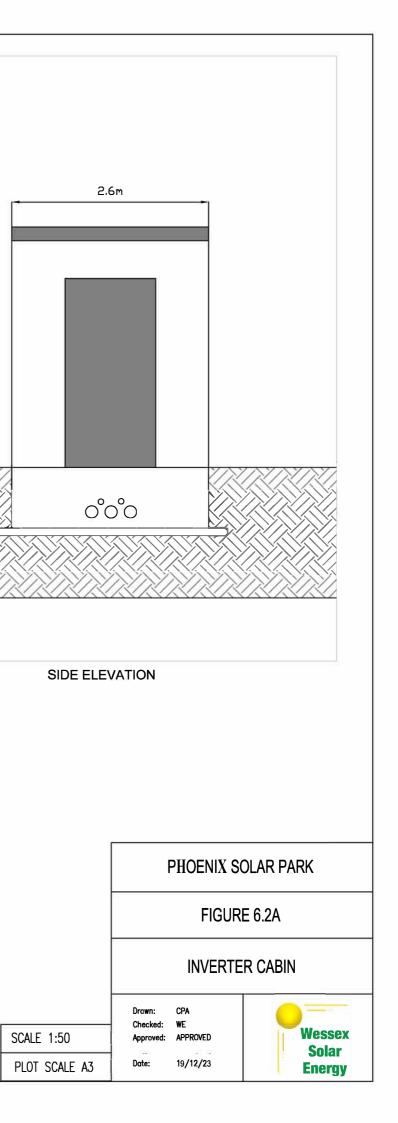
CC GROUND I	NVESTIGATIONS LTD			Pit No
SOAKA	AWAY TEST			TP57
Telephone: 01452 739	165, Fax: 01452 739220, Email: info@ccground.co	D.UK		Sheet 1 of 1
Project Name: E	Blackberry Lane	Proje	ct No: C6755	Date 05/06/2020
Location: Pemb	oroke, Pembrokeshire			Logged By MM
Client: Wessex	Solar Power Ltd			Checked By MA
TEST 1:			Time (minutes)	
LENGTH	2.10 m			
BREADTH	0.80 m		0 20 40 60 80 100 120 140 160 180 20	0 220 240
DEPTH	2.00 m			
WATER LEVEL	Dry		1.40	
FILL LEVEL	1.30 m	Depth to water (m)		
		ter	1.50	75% full
Vp75-25	m³	wat	1.60 +	
	2	ţ		
a _{p50}	m ²	Ę	1.70 +	
t _{p75-25}	min	De	1.80 -	
				_ · _ · _
	1		1.90 -	25% full
soil infiltration			2.00	
Insufficient soal	kaway to calculate infiltration rate		2.00	
REMARKS:				
	t in general accordance with BRE 3	65 (20	16)	
rest camed Out	nin general accordance with DRE S	05 (20	10 <i>j</i> .	

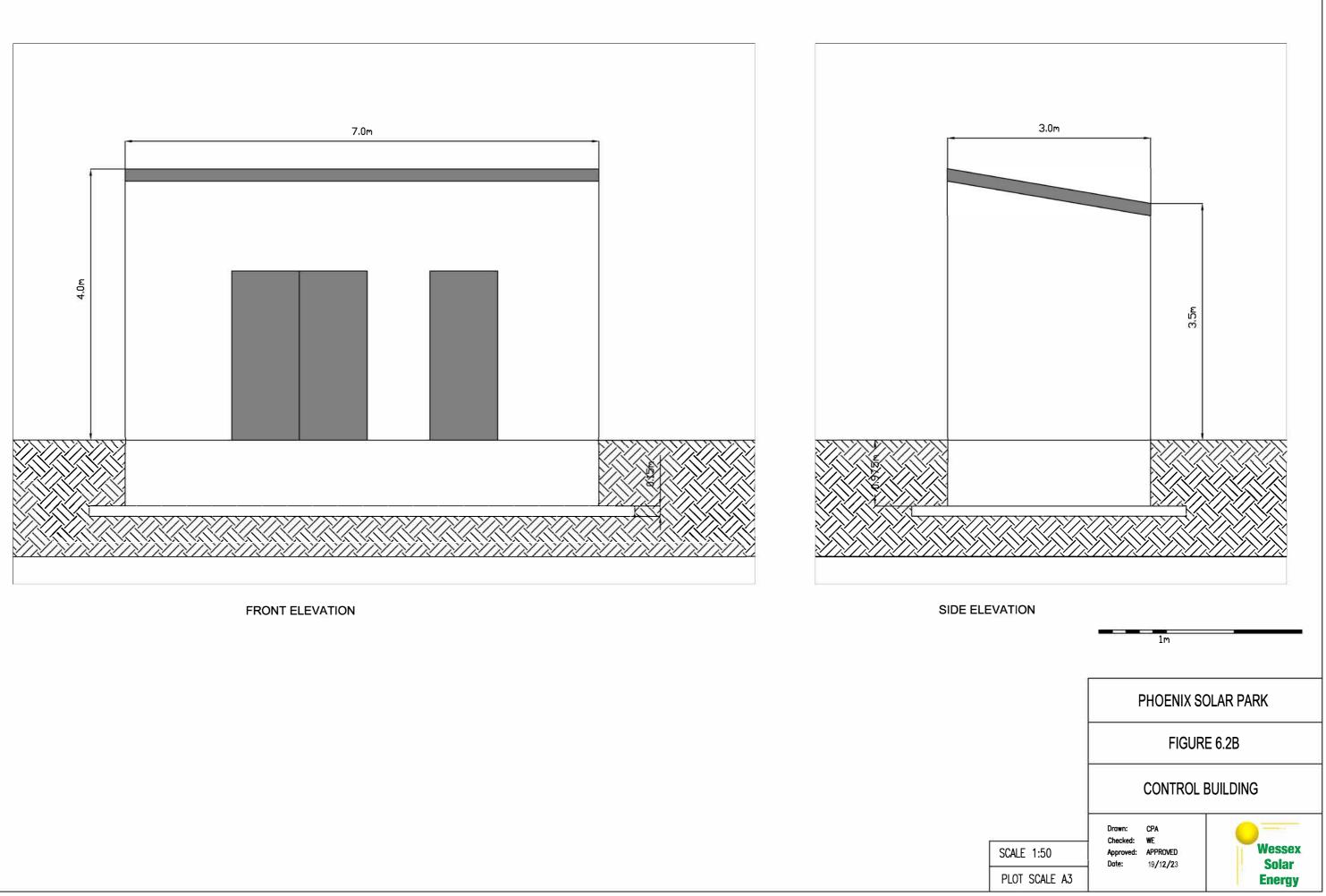

CC GROUND I	NVESTIGATIONS LTD			Pit No
	AWAY TEST			TP38A
	0165, Fax: 01452 739220, Email: info@ccground.co			Sheet 1 of 1
Project Name: I	Blackberry Lane	Proje	ect No: C6755	Date 05/06/2020
Location: Pemb	proke, Pembrokeshire	-		Logged By MM
Client: Wessex	Solar Power Ltd			Checked By MA
TEST 1:			Time (minutes)	1717 1
LENGTH	2.00 m			
BREADTH	0.70 m		0 20 40 60 80 10 $0.60 \pm 0.60 \pm 0.$	0 120
DEPTH	2.00 m			
WATER LEVEL	Dry		0.80 -	
FILL LEVEL	0.65 m	Ē	1.00	
	*	Depth to water (m)		75% full
V _{p75-25}	m³	Ň	1.20 +	
a _{p50}	m ²	n to	1.40 -	
	min	epti	1.40 +	
t _{p75-25}	111111	ŏ	1.60	
			1.80	25% full
soil infiltration	rate, f m/s ⁻¹		1.80 †	
	kaway to calculate infiltration rate		2.00	
REMARKS:				
		(00		
Test carried ou	t in general accordance with BRE 3	65 (20	16).	

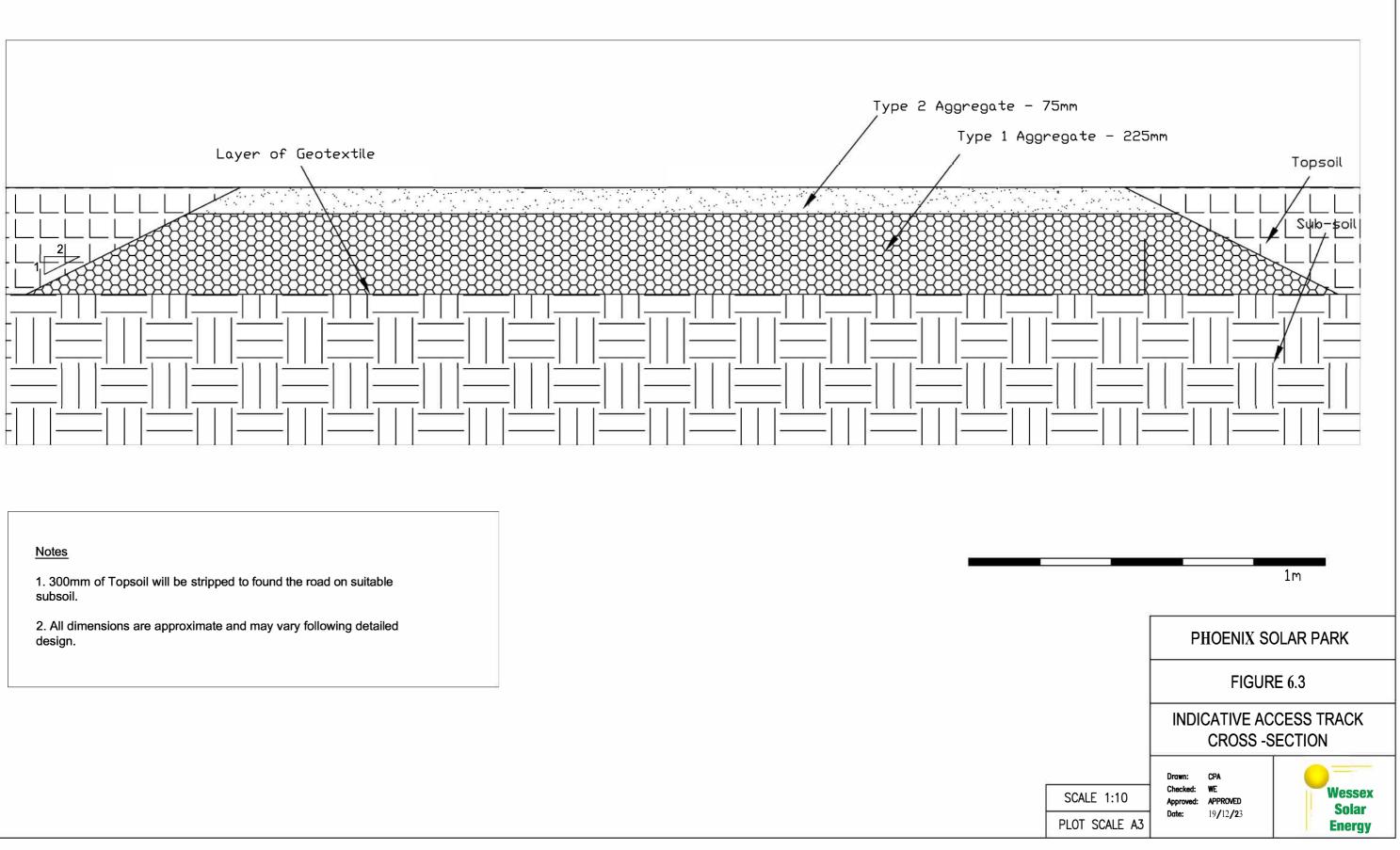


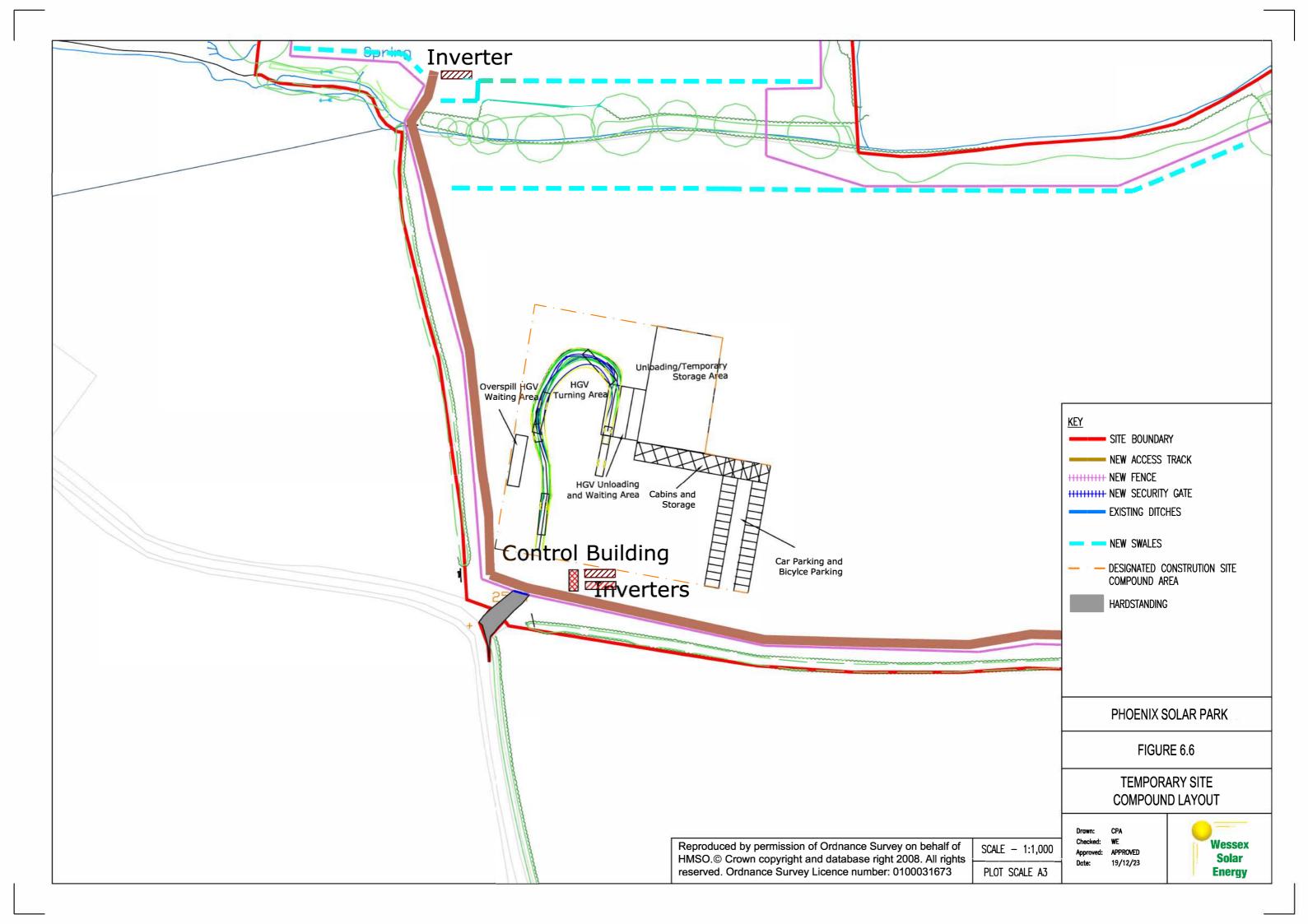
Appendix D Wessex Solar Energy Drawings


Phoenix Solar Park Figures:


- 1.2 Site Boundary and Indicative Layout
- 6.1 Mounted Panel Dimensions
- 6.2A Inverter Cabin
- 6.2B Control Building
- 6.3 Indicative Access Track Cross-Section
- 6.6 Temporary Site Compound Layout






FRONT ELEVATION

Appendix E Proposed Drainage Information

- Greenfield Runoff Rates
- WSE Phoenix Solar Park Figure 1.2 with added drainage
- MicroDrainage Source Control Cascade outputs

FEH Greenfield Runoff

Using the 2008 Statistical Method QMED Equation

Project Title	Blackberry Solar Farm				
Project No	332610851	100			

Methodology as set out in SuDS Manual 24.3.2

SUDS Manual Chapter 24

1 Retrieve FEH Catchment Information

Define BFIHOST definition source		FEH	see note 1
Catchment Descriptors	BFIHOST	0.473	
	SAAR	1104.0	see note 1
	FARL	1.0	see note 2

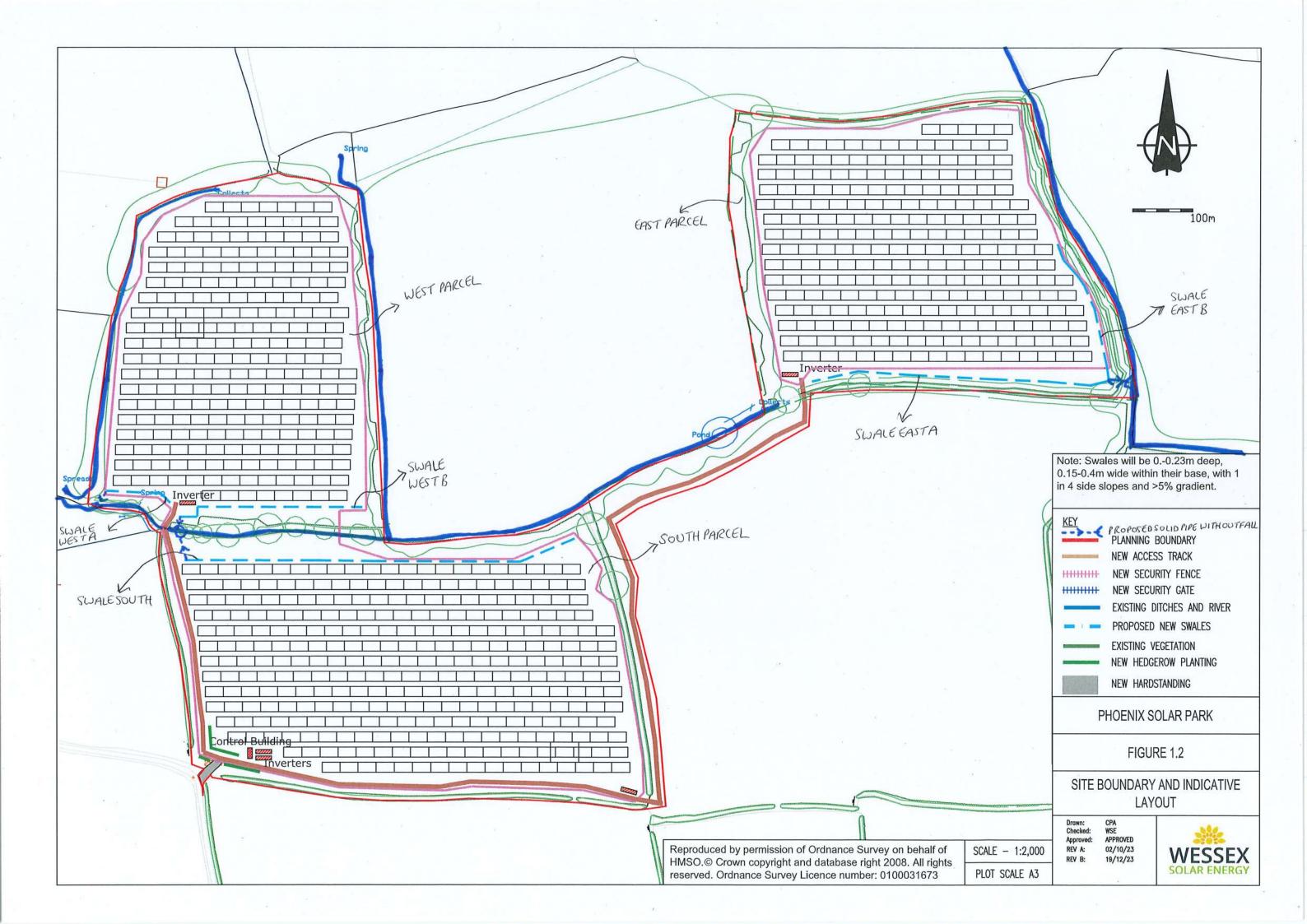
2 Derive QBAR (mean annual flood)

Define area	Site Area	1.0	ha	
	Applied Area	50.0	ha	see note 3
FEH Index Flood (SuDS Manual Equation 24.2)	QMED (Q ₂)	8.5	l/s	see note 4
Calculate QBAR by dividing QMED by 2yr growth factor	QBAR	9.6	l/s	see note 5

3 Select appropriate growth factors

FSR Hydrological Region	9
100yr Growth Curve Factor GQ ₁₀₀	2.42
30yr Growth Curve Factor GQ ₃₀	1.98
10yr Growth Curve Factor GQ ₁₀	1.49
2yr Growth Curve Factor GQ ₂	0.88
1yr Growth Curve Factor GQ1	0.78

(refer to FSR Hydrological Region tab)


4 Derive Flood Frequency

Greenfield Runoff per 1ha		
100yr Peak Runoff Rate	Q ₁₀₀	23.3 l/s
30yr Peak Runoff Rate	Q ₃₀	19.1 l/s
10yr Growth Curve Rate	Q ₁₀	14.3 l/s
QBAR Peak Runoff Rate	QBAR	9.6 l/s
2yr Peak Runoff Rate	Q ₂	8.5 l/s
1yr Peak Runoff Rate	Q ₁	7.5 l/s

Q ₁₀₀	23.3	l/s/ha
Q ₃₀	19.1	l/s/ha
Q ₁₀	14.3	l/s/ha
Q _{BAR}	9.6	l/s/ha
Q ₂	8.5	l/s/ha
Q ₁	7.5	l/s/ha

DOCUMENT ISSUE RECORD

Rev	Comments	Prepared	Date	Checked	Date
-	Original calculation	E Edney	07/11/2023	J Pulsford	19/12/2023

							Page 1
Caversham Bridge Ho	ouse		332610851	Phoenix :	Solar P	ark	
Vaterman Place			Swale East	E A			
Reading, RG1 8DN							Micco
Date 19/12/2023 14	:08		Designed B	by eedney			
File 231218 Blackbe	erry Lane		Checked by	JNP			Draina
 Innovyze	-		Source Con		0.1		
Cascade Summary	of Resul	ts for	231218 BI	ackberry	Lane St	wale E	ast A.SRC
*				1			
	-	stream		Outflo	w To Ove	rflow I	! o
	Str	uctures					
231218_B	lackberry	Lane Sw	ale East B.S	RCX (N	one)	(None	e)
	F	Half Dra	ain Time : 2	minutes.			
Storm	Max	Max	Max	Max	Max	Max	Status
Event		-	infiltration				
	(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
15 min Summe	er 24.191	0.171	0.0	7.3	7.3	1.2	ОК
30 min Summe			0.0	7.2	7.2	1.2	
60 min Summe			0.0	6.6	6.6		
120 min Summe 180 min Summe			0.0	4.8 3.8	4.8 3.8	0.5 0.3	
240 min Summe			0.0	3.1	3.0	0.3	
360 min Summe			0.0	2.3	2.3		
480 min Summe			0.0	1.9	1.9		
600 min Summe			0.0	1.6	1.6		
720 min Summe	er 24.074	0.054	0.0	1.4	1.4	0.1	ОК
960 min Summe	er 24.070	0.050	0.0	1.2	1.2	0.1	O K
1440 min Summe			0.0	0.8	0.8	0.0	ΟK
2160 min Summe			0.0	0.6	0.6	0.0	
2880 min Summe 4320 min Summe			0.0	0.5	0.5	0.0	
5760 min Summe			0.0	0.4 0.3	0.4		
7200 min Summe			0.0	0.3	0.3	0.0	ОК
	Storm			l Discharge	Time-Pe	ak	
	Event	(mm	/hr) Volume (m³)	Volume (m³)	(mins)		
			(111)	(111)			
	L5 min Sum					12	
	30 min Summ	mer 87	.218 0.0	6.3		20	
	30 min Sum 50 min Sum	mer 87 mer 57	.218 0.0 .895 0.0) 6.3) 8.3		20 34	
12	30 min Summ	mer 87 mer 57 mer 34	.218 0.0 .895 0.0 .230 0.0) 6.3) 8.3) 9.9		20 34 64	
2 6 12 18	30 min Sum 50 min Sum 20 min Sum	mer 87 mer 57 mer 34 mer 25	.218 0.0 .895 0.0) 6.3) 8.3) 9.9) 10.9		20 34	
24 12 18 24	30 min Summ 50 min Summ 20 min Summ 30 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20	.218 0.0 .895 0.0 .230 0.0 .256 0.0) 6.3) 8.3) 9.9) 10.9) 11.7	1	20 34 64 94	
24 36 24 36	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0	1	20 34 64 94 24	
3 6 12 18 24 36 48 60	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 30 min Summ 50 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0	0 6.3 0 8.3 0 9.9 0 10.9 0 11.7 0 13.0 0 14.0 0 14.8	1 1 2 3	20 34 64 94 24 84 44 02	
3 6 12 18 24 36 48 60 72	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 30 min Summ 20 min Summ 20 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 14.8) 15.5	1 1 2 3 3 3	20 34 64 94 24 84 44 02 64	
3 6 12 18 24 36 48 60 72 96	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 60 min Summ 70 min Summ 90 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8 mer 7	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0 .212 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 15.5) 16.6	1 1 2 3 3 3 4	20 34 64 94 24 84 44 02 64 78	
3 6 12 18 24 36 48 60 72 96 144	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 60 min Summ 70 min Summ 90 min Summ	ner 87 ner 57 ner 34 ner 25 ner 20 ner 15 ner 12 ner 10 ner 8 ner 7 ner 5	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0 .212 0.0 .301 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 15.5) 16.6) 18.3	1 1 2 3 3 4 7	20 34 64 94 24 84 44 02 64 78 22	
24 12 18 24 36 48 60 72 96 144 216	30 min Summ 50 min Summ 20 min Summ 30 min Summ 50 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8 mer 7 mer 5 mer 3	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0 .301 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 15.5) 16.6) 18.3) 20.2	1 1 2 3 3 4 7 10	20 34 64 94 24 84 44 02 64 78 22 80	
24 12 18 24 36 48 60 72 96 144 216 288	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 60 min Summ 70 min Su	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8 mer 7 mer 5 mer 3 mer 3	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0 .301 0.0 .899 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 14.8) 15.5) 16.6) 20.2) 21.7	1 1 2 3 3 4 7 10 14	20 34 64 94 24 84 44 02 64 78 22 80 44	
24 12 18 24 36 48 60 72 96 144 216 288 432	30 min Summ 50 min Summ 20 min Summ 30 min Summ 50 min Summ	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8 mer 7 mer 3 mer 3 mer 2	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0 .301 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 14.0) 14.8) 15.5) 16.6) 20.2) 21.7) 24.3	1 1 2 3 3 4 7 10 14 21	20 34 64 94 24 84 44 02 64 78 22 80	
24 12 18 24 36 48 60 72 96 144 216 288 432 576	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 60 min Summ 70 min Su	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8 mer 7 mer 3 mer 3 mer 3 mer 1	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .212 0.0 .301 0.0 .899 0.0 .146 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 14.5) 16.6) 16.6) 20.2) 21.7) 24.3) 26.5	1 1 2 3 3 4 7 10 14 21 29	20 34 64 94 24 84 44 02 64 78 22 80 44 32	
24 12 18 24 36 48 60 72 96 144 216 288 432 576	30 min Summ 50 min Summ 20 min Summ 30 min Summ 40 min Summ 50 min Summ 60 min Summ 70 min Su	mer 87 mer 57 mer 34 mer 25 mer 20 mer 15 mer 12 mer 10 mer 8 mer 7 mer 3 mer 3 mer 3 mer 1	.218 0.0 .895 0.0 .230 0.0 .256 0.0 .381 0.0 .080 0.0 .158 0.0 .281 0.0 .961 0.0 .301 0.0 .899 0.0 .146 0.0 .917 0.0) 6.3) 8.3) 9.9) 10.9) 11.7) 13.0) 14.0) 14.5) 16.6) 16.6) 20.2) 21.7) 24.3) 26.5	1 1 2 3 3 4 7 10 14 21 29	20 34 64 94 24 84 44 02 64 78 22 80 44 32 20	

Stantec UK Ltd		Page 2
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale East A	
Reading, RG1 8DN		Mirro
Date 19/12/2023 14:08	Designed by eedney	Drainage
File 231218_Blackberry Lane	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Cascade Summary of Results for 231218 Blackberry Lane Swale East A.SRCX

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min Summer	24.043	0.023	0.0	0.2	0.2	0.0	O K
10080	min Summer	24.042	0.022	0.0	0.2	0.2	0.0	O K
15	min Winter	24.191	0.171	0.0	7.3	7.3	1.3	ΟK
30	min Winter	24.180	0.160	0.0	6.9	6.9	1.1	O K
60	min Winter	24.152	0.132	0.0	5.7	5.7	0.6	ΟK
120	min Winter	24.118	0.098	0.0	3.6	3.6	0.3	ΟK
180	min Winter	24.102	0.082	0.0	2.7	2.7	0.2	ΟK
240	min Winter	24.091	0.071	0.0	2.2	2.2	0.1	ΟK
360	min Winter	24.078	0.058	0.0	1.6	1.6	0.1	ΟK
480	min Winter	24.073	0.053	0.0	1.3	1.3	0.1	ОК
600	min Winter	24.069	0.049	0.0	1.1	1.1	0.1	ΟK
720	min Winter	24.067	0.047	0.0	1.0	1.0	0.1	ОК
960	min Winter	24.061	0.041	0.0	0.8	0.8	0.0	ΟK
1440	min Winter	24.055	0.035	0.0	0.6	0.6	0.0	ΟK
2160	min Winter	24.050	0.030	0.0	0.4	0.4	0.0	ОК
2880	min Winter	24.047	0.027	0.0	0.3	0.3	0.0	ОК
4320	min Winter	24.043	0.023	0.0	0.3	0.3	0.0	ОК
5760	min Winter	24.041	0.021	0.0	0.2	0.2	0.0	ОК
7200	min Winter	24.040	0.020	0.0	0.2	0.2	0.0	ОК
8640	min Winter	24.039	0.019	0.0	0.2	0.2	0.0	ОК
10080	min Winter	24.038	0.018	0.0	0.2	0.2	0.0	O K

	Storm Event				Discharge Volume (m³)		
8640	min	Summer	1.495	0.0	31.0	4264	
10080	min	Summer	1.376	0.0	33.3	5112	
15	min	Winter	126.207	0.0	4.8	12	
30	min	Winter	87.218	0.0	6.7	20	
60	min	Winter	57.895	0.0	8.9	34	
120	min	Winter	34.230	0.0	10.5	64	
180	min	Winter	25.256	0.0	11.6	96	
240	min	Winter	20.381	0.0	12.5	124	
360	min	Winter	15.080	0.0	13.8	182	
480	min	Winter	12.158	0.0	14.9	242	
600	min	Winter	10.281	0.0	15.7	296	
720	min	Winter	8.961	0.0	16.5	358	
960	min	Winter	7.212	0.0	17.7	490	
1440	min	Winter	5.301	0.0	19.5	718	
2160	min	Winter	3.899	0.0	21.5	1072	
2880	min	Winter	3.146	0.0	23.1	1452	
4320	min	Winter	2.340	0.0	25.8	2132	
5760	min	Winter	1.917	0.0	28.1	2960	
7200	min	Winter	1.664	0.0	30.5	3792	
8640	min	Winter	1.495	0.0	32.9	4304	
10080	min	Winter	1.376	0.0	35.4	4968	
		©	1982-20	20 Inno	vyze		

Stantec UK Ltd		Page 3
Caversham Bridge House	332610851 Phoenix Solar Park	
Naterman Place	Swale East A	
Reading, RG1 8DN		— Micro
Date 19/12/2023 14:08	Designed by eedney	
File 231218_Blackberry Lane		Drainag
Innovyze	Source Control 2020.1	
ппоууге	Source control 2020.1	
Cascade Rainfall Details for	231218 Blackberry Lane Swale E	ast A.SRCX
Rainfall Moo	del FEH	
Return Period (year		
FEH Rainfall Vers		
	ion GB 201796 203176 SN 01796 03176	
Data Ty		
Summer Stor		
Winter Stor		
Cv (Summe Cv (Winte	,	
Shortest Storm (min		
Longest Storm (min	•	
Climate Change		
<u>T1</u>	ime Area Diagram	
Тот	tal Area (ha) 0.011	
	Fime (mins) Area 'rom: To: (ha)	
_	0 4 0.011	
	0 4 0.011	

Stantec UK Ltd		Page 4
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale East A	
Reading, RG1 8DN		Micro
Date 19/12/2023 14:08	Designed by eedney	Drainage
File 231218_Blackberry Lane	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Cascade Model Details for 231218 Blackberry Lane Swale East A.SRCX

Storage is Online Cover Level (m) 24.200

Swale Structure

 Infiltration Coefficient Base (m/hr)
 0.00000
 Length (m)
 187.0

 Infiltration Coefficient Side (m/hr)
 0.00000
 Side Slope (1:X)
 4.0

 Safety Factor
 2.0
 Slope (1:X)
 100.0

 Porosity
 1.00
 Cap Volume Depth (m)
 0.180

 Invert Level (m)
 24.020
 Cap Infiltration Depth (m)
 0.000

 Base Width (m)
 0.4
 0.4

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	35.0	Coefficient of Contraction	0.600
Length (m)	16.000	Upstream Invert Level (m)	24.020
Roughness k (mm)	0.600		

antec UK Ltd							Page
versham Bridge Hou	ise	332	610851	Phoenix	Solar P	ark	
terman Place		Swa	le East	В			
ading, RG1 8DN							Micr
te 19/12/2023 14:0)7	Des	igned b	y eedney			
le 231218 Blackber	rv Lane .		cked by				Drair
novyze				trol 202	0 1		
	6 Deeulte						
Cascade Summary o	I RESULTS			ackberry			
Upstream Structures		Out	flow To		Ove	rflow 1	Го
(None)	231218_Bla	ckberry	Lane Swa	le East A.	SRCX	(None	e)
	Half	Drain 1	'ime : 1	minutes.			
Storm Event	Max Max Level Dept (m) (m)	th Infil	lax tration /s)	Max Control Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
15 min Summer	24.154 0.10	04	0.0	4.0	4.0	0.3	ОК
30 min Summer			0.0	3.8	3.8	0.2	ОК
60 min Summer			0.0	3.0	3.0		
120 min Summer			0.0	1.9	1.9	0.1	
180 min Summer 240 min Summer			0.0	1.5 1.2	1.5 1.2		
360 min Summer			0.0	0.9	0.9	0.0	
480 min Summer			0.0	0.7	0.7	0.0	
600 min Summer	24.087 0.03	37	0.0	0.6	0.6	0.0	0 K
720 min Summer			0.0	0.6	0.6	0.0	
960 min Summer			0.0	0.4	0.4		
1440 min Summer 2160 min Summer			0.0	0.3 0.2	0.3	0.0	
2880 min Summer			0.0	0.2	0.2	0.0	
4320 min Summer			0.0	0.1	0.1		
5760 min Summer			0.0	0.1	0.1		
7200 min Summer	24.065 0.03	15	0.0	0.1	0.1	0.0	ОК
	Storm	Rain	Flooded	Discharge	a Time-Pe	ak	
	Event		Volume	Volume	(mins)		
			(m³)	(m³)			
15	min Summer	126.207	0.0	1.8	3	11	
	min Summer	87.218	0.0			18	
	min Summer	57.895	0.0			34	
	min Summer	34.230	0.0	3.8		64	
	min Summer	25.256	0.0	4.2 4.6		94 22	
	min Summer min Summer	20.381 15.080	0.0	4.6		22 82	
	min Summer	12.158	0.0	5.4		44	
	min Summer	10.281	0.0	5.8		02	
	min Summer	8.961	0.0	6.0		68	
	min Summer	7.212	0.0	6.5		76	
	min Summer	5.301	0.0	7.1		28	
2160	min Summer min Summer	3.899 3.146	0.0	7.9		64 60	
		2.340	0.0	o 9.4			
2880	min Summer						
2880 4320	min Summer min Summer	1.917	0.0	10.3	3 28	40	
2880 4320 5760		1.917 1.664	0.0	10.3 11.2		40 84	

Stantec UK Ltd		Page 2
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale East B	
Reading, RG1 8DN		Mirro
Date 19/12/2023 14:07	Designed by eedney	Drainage
File 231218_Blackberry Lane	Checked by JNP	Diamade
Innovyze	Source Control 2020.1	

Cascade Summary of Results for 231218 Blackberry Lane Swale East B.SRCX

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min Summ	er 24.063	0.013	0.0	0.1	0.1	0.0	ΟK
10080	min Summ	er 24.063	0.013	0.0	0.1	0.1	0.0	ΟK
15	min Wint	er 24.152	0.102	0.0	3.9	3.9	0.2	ΟK
30	min Wint	er 24.142	0.092	0.0	3.3	3.3	0.2	ΟK
60	min Wint	er 24.124	0.074	0.0	2.3	2.3	0.1	ΟK
120	min Wint	er 24.105	0.055	0.0	1.4	1.4	0.1	ΟK
180	min Wint	er 24.098	0.048	0.0	1.1	1.1	0.0	ΟK
240	min Wint	er 24.093	0.043	0.0	0.9	0.9	0.0	ΟK
360	min Wint	er 24.087	0.037	0.0	0.6	0.6	0.0	ΟK
480	min Wint	er 24.083	0.033	0.0	0.5	0.5	0.0	ОК
600	min Wint	er 24.081	0.031	0.0	0.4	0.4	0.0	ОК
720	min Wint	er 24.078	0.028	0.0	0.4	0.4	0.0	ОК
960	min Wint	er 24.075	0.025	0.0	0.3	0.3	0.0	ΟK
1440	min Wint	er 24.072	0.022	0.0	0.2	0.2	0.0	ΟK
2160	min Wint	er 24.069	0.019	0.0	0.2	0.2	0.0	ОК
2880	min Wint	er 24.067	0.017	0.0	0.1	0.1	0.0	ОК
4320	min Wint	er 24.064	0.014	0.0	0.1	0.1	0.0	ОК
5760	min Wint	er 24.063	0.013	0.0	0.1	0.1	0.0	ОК
7200	min Wint	er 24.062	0.012	0.0	0.1	0.1	0.0	ОК
8640	min Wint	er 24.061	0.011	0.0	0.1	0.1	0.0	ОК
10080	min Wint	er 24.061	0.011	0.0	0.1	0.1	0.0	O K

	Stor Even				Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	1.495	0.0	12.0	4248
10080	min	Summer	1.376	0.0	12.9	4960
15	min	Winter	126.207	0.0	1.9	11
30	min	Winter	87.218	0.0	2.6	18
60	min	Winter	57.895	0.0	3.4	34
120	min	Winter	34.230	0.0	4.1	62
180	min	Winter	25.256	0.0	4.5	92
240	min	Winter	20.381	0.0	4.9	122
360	min	Winter	15.080	0.0	5.4	184
480	min	Winter	12.158	0.0	5.8	240
600	min	Winter	10.281	0.0	6.1	300
720	min	Winter	8.961	0.0	6.4	364
960	min	Winter	7.212	0.0	6.9	470
1440	min	Winter	5.301	0.0	7.6	730
2160	min	Winter	3.899	0.0	8.4	1060
2880	min	Winter	3.146	0.0	9.0	1444
			2.340		10.0	2188
5760	min	Winter	1.917	0.0	10.9	2824
			1.664		11.9	3640
			1.495		12.8	4432
10080	min	Winter	1.376	0.0	13.8	5216
		C	1982-20	20 Inno	vyze	

Stantec UK Ltd		Page 3
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale East B	
Reading, RG1 8DN		— Micro
Date 19/12/2023 14:07	Designed by eedney	
File 231218_Blackberry Lane	Checked by JNP	Drainag
Innovyze	Source Control 2020.1	
Cascade Rainfall Details for	r 231218_Blackberry Lane Swale E	last B.SRCX
Rainfall Mo		
Return Period (yea FEH Rainfall Vers		
	ion GB 201796 203176 SN 01796 03176	
Data T		
Summer Sto	rms Yes	
Winter Sto		
Cv (Summ		
Cv (Wint Shortest Storm (mi		
Longest Storm (mi	*	
Climate Chang		
-		
<u>T</u> .	ime Area Diagram	
_		
TC	tal Area (ha) 0.007	
	Time (mins) Area	
I	From: To: (ha)	
	0 4 0.007	
	0 10.007	

Stantec UK Ltd		Page 4
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale East B	
Reading, RG1 8DN		Micro
Date 19/12/2023 14:07	Designed by eedney	Drainage
File 231218_Blackberry Lane	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Cascade Model Details for 231218 Blackberry Lane Swale East B.SRCX

Storage is Online Cover Level (m) 24.200

Swale Structure

 Infiltration Coefficient Base (m/hr)
 0.00000
 Length (m)
 103.0

 Infiltration Coefficient Side (m/hr)
 0.00000
 Side Slope (1:X)
 4.0

 Safety Factor
 2.0
 Slope (1:X)
 100.0

 Porosity
 1.00
 Cap Volume Depth (m)
 0.150

 Invert Level (m)
 24.050
 Cap Infiltration Depth (m)
 0.000

 Base Width (m)
 0.2
 0.2
 0.000

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	35.0	Coefficient of Contraction	0.600
Length (m)	16.000	Upstream Invert Level (m)	24.050
Roughness k (mm)	0.600		

antec UK				00000	0.051		~ .		Page
	Bridge Hou	lse		33261	L0851	Phoenix :	Solar Pa	ark	
terman Pl	ace			Swale	e Sout	h			
ading, RG	G1 8DN								Mic
te 19/12/	′2023 14:0	3		Desig	gned b	y eedney			
le 231218	BLACKBER	RY LAN	Ε	Checl	ked bv	JNP			Drai
lovyze	_					trol 202	0.1		
4									
	Summary	of Resu	ilts f	or 10	0 vear	Return	Period	(+40%)	
								<u> </u>	-
		:	Half Dr	ain Ti	me : 4	minutes.			
	Max	Ма		Max		Max	Status		
	Event		-			Control E			
		(m)	(m)	(1)	's)	(l/s)	(1/s)	(m³)	
15	min Summer	21.538	0.218		0.0	8.5	8.5	3.5	ОК
30	min Summer	21.543	0.223		0.0	8.7	8.7		ОК
60	min Summer	21.529	0.209		0.0	8.3	8.3	3.2	0 K
	min Summer				0.0	7.1	7.1	1.7	
	min Summer				0.0		6.1		
	min Summer				0.0		5.1		ΟK
	min Summer				0.0		4.0		
	min Summer				0.0		3.3		
	min Summer				0.0		2.8		
	min Summer				0.0		2.4		
	min Summer				0.0		2.0		
	min Summer				0.0		1.4		
	min Summer min Summer				0.0	1.1 0.9	1.1 0.9		
	min Summer				0.0	0.9	0.9		
	min Summer				0.0		0.5		
	min Summer				0.0		0.5		
	min Summer				0.0		0.4		ОК
	min Summer				0.0		0.4		
15	min Winter	21.542	0.222		0.0	8.7	8.7	3.7	ОК
								_	
		Storm				l Discharge			
		Event	(m	m/hr)	Volume (m³)	Volume (m³)	(mins)	,	
		i min Sun			0.0			12	
) min Sun		7.218	0.0			21	
) min Sun		7.895	0.0			36	
) min Sun		4.230	0.0			66	
) min Sun) min Sun		5.256	0.0 0.0			96 .26	
) min Sun) min Sun		0.381 5.080	0.0			.26 .84	
) min Sun) min Sun		2.158	0.0			244	
) min Sun) min Sun		0.281	0.0			06	
) min Sun) min Sun		8.961	0.0			66	
) min Sun) min Sun		7.212	0.0			86	
) min Sun		5.301	0.0			14	
) min Sun		3.899	0.0			.00	
) min Sun		3.146	0.0			20	
) min Sun		2.340	0.0			60	
	5760) min Sun	nmer	1.917	0.0			80	
	7200) min Sun	nmer	1.664	0.0	49.5	5 35	92	
	8640) min Sun	nmer	1.495	0.0	53.4	4 4 3	04	
	10000) min Sun		1 376	0 0	57	D E 1	28	

8640 min Summer 1.495 10080 min Summer 1.376

15 min Winter 126.207

0.0

0.0

©1982-2020 Innovyze

57.3

8.3

5128

13

antec UK		2.0		2226	10051	Phoenix S	lolor Dr	- mlr	Page 2
	Bridge Hou	50					outar Pa	al K	
iterman Pl	ace			Swal	e Soutl	h			
ading, RG	51 8DN								
te 19/12/	2023 14:0	3		Desi	gned b	y eedney			
.le 231218	BLACKBER	RY LANE	z	Chec	ked by	JNP			Drair
inovyze						trol 2020) 1		
ino vy 20				DOUL	00 0011	2020	· • ±		
	Summary	of Resu	lts f	or 10)0 year	Return H	Period	(+40%)	-
	Storm	Max	Max	Max Max Max Max					Status
	Event	Level	Depth	Infil	tration	Control E	Outflow	Volume	
		(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)	
20	min Ninton	21 520	0 010		0 0	0 6	0 6	2 6	0 17
	min Winter				0.0	8.6	8.6	3.6	
	min Winter				0.0	7.9	7.9	2.6	
	min Winter				0.0	6.0	6.0	1.1	
180	min Winter	21.434	0.114		0.0	4.6	4.6	0.7	ΟK
240	min Winter	21.420	0.100		0.0	3.7	3.7	0.5	ΟK
360	min Winter	21.404	0.084		0.0	2.8	2.8	0.3	ОК
	min Winter				0.0	2.3	2.3		
	min Winter				0.0	1.9	1.9		
	min Winter				0.0	1.7	1.7		
	min Winter				0.0	1.3	1.3	0.1	
	min Winter				0.0	1.0	1.0		
	min Winter				0.0	0.7	0.7	0.1	0 K
2880	min Winter	21.355	0.035		0.0	0.6	0.6	0.0	O K
4320	min Winter	21.351	0.031		0.0	0.4	0.4	0.0	ΟK
5760	min Winter	21.348	0.028		0.0	0.4	0.4	0.0	ОК
	min Winter				0.0	0.3	0.3		
	min Winter				0.0	0.3	0.3		
	min Winter				0.0	0.3	0.3		
		Storm Event		Rain m/hr)	Flooded Volume	Discharge Volume	Time-Pe (mins)		
					(m³)	(m³)			
		min Win						22	
		min Win		7.895	0.0			38	
		min Win		4.230	0.0			66	
		min Win		5.256	0.0	20.0		96	
	240	min Win	iter 2	0.381	0.0	21.5	1	24	
	360	min Win	iter 1	5.080	0.0	23.8	1	84	
	480	min Win	ter 1	2.158	0.0	25.6	2	46	
		min Win		0.281	0.0			08	
		min Win		8.961	0.0			66	
		min Win		7.212	0.0			88	
) min Win						38	
				5.301	0.0				
		min Win		3.899	0.0			.00	
		min Win		3.146	0.0			28	
	4320	min Win	iter	2.340	0.0	44.4	22	04	
	5760	min Win	ter	1.917	0.0	48.5	28	56	
	7200	min Win	ter	1.664	0.0	52.6	36	48	
		min Win		1.495	0.0			88	
	8640				0.0	00.1			
			ter	1.376	0.0	60 9	4 8	24	
		min Win	iter	1.376	0.0	60.9	48	24	
			iter	1.376	0.0	60.9	48	24	

Stantec UK Ltd		Page 3
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale South	
Reading, RG1 8DN		Micco
Date 19/12/2023 14:03	Designed by eedney	
File 231218 BLACKBERRY LANE		Drainag
 Innovyze	Source Control 2020.1	
- 1 -		
<u>1</u>	Rainfall Details	
Rainfall Mo	odel FEH	
Return Period (yea		
FEH Rainfall Vers		
Site Locat	tion GB 201796 203176 SN 01796 03176	
Data 1		
Summer Sto		
Winter Sto Cv (Summ		
Cv (Sum Cv (Wint	- ,	
Shortest Storm (m:	,	
Longest Storm (m:		
Climate Chang	ge % +40	
<u>T</u>	'ime Area Diagram	
Т	otal Area (ha) 0.031	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	
	0 4 0.031	

Stantec UK Ltd		Page 4
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale South	
Reading, RG1 8DN		Micro
Date 19/12/2023 14:03	Designed by eedney	Drainage
File 231218_BLACKBERRY LANE	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 21.550

Swale Structure

Infiltration Coefficient Base (m/hr)	0.00000 Length (m)	262.5
Infiltration Coefficient Side (m/hr)	0.00000 Side Slope (1:X)	4.0
Safety Factor	2.0 Slope (1:X)	150.0
Porosity	1.00 Cap Volume Depth (m)	0.230
Invert Level (m)	21.320 Cap Infiltration Depth (m)	0.000
Base Width (m)	0.4	

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient 0.500
Slope (1:X)	35.0	Coefficient of Contraction 0.600
Length (m)	10.000	Upstream Invert Level (m) 21.320
Roughness k (mm)	0.600	

ntec UK										Page
ersham E	Bridg	re Hou	se		3326	510 <mark>851 B</mark>	Phoenix S	Solar Pa	ark	
rman Pl	ace				Swal	Le West	A			
ling, RG	51 8D	N								Mice
19/12/			0		Deci	aned hy	y eedney			– Micr
										Drai
231218	_вта	ickber.	гу Ца	ane		cked by		0 1		
vyze					Sour	rce Cont	crol 2020	J.1		
	0		- f D -	1+	fan 1(0	Determ	Devial	(
	Sum	mary (JI RE	suits	IOL I	JU year	Return	Period	(+403)	-
				Half	Drain T	ime : 1 1	minutes.			
	Storm	n	Max	Max	K N	lax	Max	Max	Max	Status
	Event	t	Leve	l Dept	th Infil	tration	Control Σ	Outflow	Volume	
			(m)	(m)) ()	L/s)	(l/s)	(l/s)	(m³)	
15	min	Summer	20.1	L3 0.00	63	0.0	1.9	1.9	0.1	ОК
		Summer				0.0	1.7	1.7	0.1	
		Summer				0.0	1.3	1.3	0.0	
120	min	Summer	20.09	93 0.04	43	0.0	0.9	0.9	0.0	ОК
180	min	Summer	20.08	37 0.03	37	0.0	0.7	0.7	0.0	ΟK
240	min	Summer	20.08	34 0.03	34	0.0	0.5	0.5	0.0	ΟK
		Summer				0.0	0.4	0.4	0.0	
		Summer				0.0	0.3	0.3	0.0	
		Summer				0.0	0.3	0.3	0.0	
		Summer				0.0	0.2	0.2	0.0	
		Summer				0.0	0.2	0.2	0.0	
		Summer				0.0	0.1	0.1	0.0	
		Summer				0.0	0.1	0.1	0.0	
		Summer				0.0	0.1	0.1	0.0	
		Summer Summer				0.0	0.1	0.1	0.0	
		Summer				0.0	0.1	0.1	0.0	
		Summer				0.0	0.1	0.1	0.0	
		Summer				0.0	0.0	0.0	0.0	
15	min	Winter	20.13	L2 0.00	62	0.0	1.8	1.8	0.1	
			Storm		Rain		Discharge			
			Event		(mm/hr)	Volume	Volume	(mins)	
						(m³)	(m³)			
		15	min :	Summer	126.207	0.0	0.8	3	10	
				Summer	87.218				18	
				Summer	57.895		1.4		32	
				Summer	34.230		1.0		62	
		180	min :	Summer	25.256		1.8	3	94	
		240	min S	Summer	20.381	0.0	2.0) 1	.22	
		360	min :	Summer	15.080	0.0	2.2	2 1	.84	
				Summer	12.158		2.3	3 2	244	
				Summer	10.281		2.5		804	
				Summer	8.961				866	
				Summer	7.212		2.8		80	
				Summer	5.301		3.1		/34	
				Summer	3.899		3.4		88	
				Summer Summer	3.146		3.0		120 56	
				Summer	2.340 1.917		4.0		.56 880	
		5700	111111	Juniner	エ・ジエノ	0.0	4.4	_ ZC	,00	

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

1.664

1.495

1.376

7200 min Summer

8640 min Summer

15 min Winter 126.207

10080 min Summer

3424

4320

5192

10

4.8

5.2

5.5

0.8

ate 19/12/202 ile 231218_B1 nnovyze <u>Su</u> Sto Eve 30 mir 60 mir 120 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	e 8DN 23 14:1 slackber ummary orm ent in Winter in Winter	.0 rry Lane of Resul Max M Level De	Swa Des Che Sou ts for 1 Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	ale West signed by arce Con 100 year Max .ltration (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	y eedney JNP trol 2020 <u>Return E</u> Max Control E (l/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1	2.1 Period Max	(+40%) Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
eading, RG1 8 ate 19/12/202 ile 231218_B1 nnovyze Sto Eve 30 mir 60 mir 120 mir 120 mir 120 mir 240 mir 240 mir 360 mir 480 mir 600 mir 720 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	8DN 23 14:1 Blackber ummary orm ent in Winter in Winter	Max Max Image: Constraint of the second state of t	Des Che Sou ts for 1 Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	signed by arce Con 100 year Max .ltration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	y eedney JNP trol 2020 <u>Return E</u> Max Control E (l/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K
Sto Eve 30 mir 60 mir 120 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	23 14:1 Blackber ummary orm ent in Winter in Winter	Max Max Image: Constraint of the second state of t	Che Sou ts for 3 Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	Max 100 year Max 1tration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	JNP trol 2020 Return F Max Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K
<u>Support</u>	ummary orm ent in Winter in Winter	Max Max Image: Constraint of the second state of t	Che Sou ts for 3 Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	Max 100 year Max 1tration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	JNP trol 2020 Return F Max Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K
Sto Sto Sto Sto Eve 30 mir 60 mir 120 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	ummary orm ent in Winter in Winter	Max Max Image: Constraint of the second state of t	Che Sou ts for 3 Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	Max 100 year Max 1tration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	JNP trol 2020 Return F Max Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
<u>Su</u> Sto Eve 30 mir 60 mir 120 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	ummary orm ent in Winter in Winter	of Resul Max N Level De (m) 20.105 0 20.097 0 20.086 0 20.081 0 20.078 0 20.078 0 20.072 0 20.072 0 20.070 0 20.068 0 20.068 0 20.067 0 20.068 0 20.067 0 20.068 0 20.069 0 20.069 0 20.069 0 20.069 0 20.059 0 20.0	Sou ts for : Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	Max 100 year Max 1tration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>trol 2020 Return E Max Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1</pre>	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
<u>Su</u> Sto Eve 30 mir 60 mir 120 mir 120 mir 120 mir 240 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	orm ent in Winter in Winter	Max Max Level De (m) De 20.105 0. 20.097 0. 20.086 0. 20.086 0. 20.078 0. 20.074 0. 20.072 0. 20.068 0. 20.067 0. 20.068 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.065 0.	ts for 3 Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	100 year Max ltration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Return E Max Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0.1	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
Sto Eve 30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	orm ent in Winter in Winter	Max Max Level De (m) De 20.105 0. 20.097 0. 20.086 0. 20.086 0. 20.078 0. 20.074 0. 20.072 0. 20.068 0. 20.067 0. 20.068 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.065 0.	Max epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	Max ltration (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Max Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Max Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Status 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K
Eve 30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	ent in Winter in Winter	Level De (m) 20.105 0. 20.097 0. 20.086 0. 20.081 0. 20.078 0. 20.074 0. 20.072 0. 20.072 0. 20.070 0. 20.068 0. 20.068 0. 20.067 0. 20.066 0. 20.072 0. 20.066 0. 20.066 0. 20.072 0. 20.066 0. 20.	epth Infi (m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	ltration (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control Σ (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Outflow (1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	Volume (m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K 0 K
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 240 mir 240 mir 240 mir 240 mir 240 mir 5760 mir 7200 mir 8640 mir	in Winter in Winter	(m) 20.105 0 20.097 0 20.086 0 20.081 0 20.078 0 20.074 0 20.072 0 20.070 0 20.068 0 20.068 0 20.067 0 20.066 0 20.072 0 20.076 0 20.072 0 20.072 0 20.076 0 20.077 0 20.072 0 20.076 0 20.077 0 20.066 0 0 20.066 0 0 20.055 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) .055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>(1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1</pre>	(1/s) 1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1	(m ³) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K 0 K
60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter	20.105 0. 20.097 0. 20.086 0. 20.081 0. 20.078 0. 20.078 0. 20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.055 .047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1	1.5 1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K 0 K
60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 240 mir 240 mir 240 mir 240 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter	20.097 0. 20.086 0. 20.081 0. 20.078 0. 20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.068 0. 20.067 0. 20.064 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.6 0.5 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.1	1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K 0 K
60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter	20.097 0. 20.086 0. 20.081 0. 20.078 0. 20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.068 0. 20.067 0. 20.064 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.047 .036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.6 0.5 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.1	1.0 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K 0 K
120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter	20.086 0. 20.081 0. 20.078 0. 20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.067 0. 20.067 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0. 20.066 0.	.036 .031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1	0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K
180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter	20.081 0. 20.078 0. 20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0.	.031 .028 .024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1	0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K 0 K
240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter	20.078 0. 20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.028 .024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1	0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K 0 K
360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter	20.074 0. 20.072 0. 20.070 0. 20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.024 .022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.2 0.2 0.1 0.1 0.1 0.1	0.3 0.2 0.2 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0	0 K 0 K 0 K 0 K
480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter	20.072 0. 20.070 0. 20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.022 .020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.2 0.1 0.1 0.1 0.1	0.2 0.2 0.1 0.1 0.1	0.0 0.0 0.0 0.0	0 K 0 K 0 K
600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	In Winter In Winter In Winter In Winter In Winter In Winter In Winter In Winter	20.070 0. 20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.020 .018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.2 0.1 0.1 0.1 0.1	0.2 0.2 0.1 0.1 0.1	0.0 0.0 0.0 0.0	0 K 0 K
720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	in Winter in Winter in Winter in Winter in Winter in Winter in Winter	20.068 0. 20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.018 .017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.1 0.1 0.1 0.1	0.2 0.1 0.1 0.1	0.0 0.0 0.0	0 K 0 K
960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	in Winter In Winter In Winter In Winter In Winter In Winter	20.067 0. 20.064 0. 20.062 0. 20.061 0. 20.059 0.	.017 .014 .012 .011 .009	0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1	0.1 0.1 0.1	0.0	ΟK
1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	in Winter In Winter In Winter In Winter In Winter	20.064 0. 20.062 0. 20.061 0. 20.059 0.	.014 .012 .011 .009	0.0 0.0 0.0 0.0	0.1 0.1 0.1	0.1 0.1	0.0	
2160 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	in Winter In Winter In Winter In Winter In Winter	20.062 0. 20.061 0. 20.059 0.	.012 .011 .009	0.0 0.0 0.0	0.1 0.1	0.1		ОК
2880 mir 4320 mir 5760 mir 7200 mir 8640 mir	in Winter in Winter in Winter in Winter	20.061 0. 20.059 0.	.011 .009	0.0	0.1		0 0	0 10
4320 mir 5760 mir 7200 mir 8640 mir	in Winter In Winter In Winter	20.059 0.	.009	0.0		0.1	0.0	0 K
5760 mir 7200 mir 8640 mir	ln Winter In Winter						0.0	ΟK
7200 mir 8640 mir	in Winter	20.059 0	.009		0.1	0.1	0.0	ΟK
8640 mir				0.0	0.1	0.1	0.0	ΟK
8640 mir		20.058 0.	.008	0.0	0.0	0.0	0.0	ОК
	In Winter	20.058 0.		0.0	0.0	0.0	0.0	
		20.057 0.		0.0	0.0	0.0	0.0	
		Storm Event	Rain (mm/hr	Flooded) Volume (m³)	Discharge Volume (m³)	Time-Pe (mins)		
	20) min Minte	07 01				10	
) min Winte) min Winte					18 34	
) min Winte) min Winte					34 64	
) min Winte) min Winte					96	
) min Winte) min Winte						
							22	
) min Winte					82	
) min Winte					54	
) min Winte					06	
) min Winte					50	
) min Winte					64	
) min Winte					14	
) min Winte		9 0.0	3.6	10	68	
	2880) min Winte	er 3.14	6 0.0			80	
	4320) min Winte	er 2.34	0 0.0	4.3	20	80	
	5760) min Winte	er 1.91	7 0.0	4.7	28	16	
	7200) min Winte				37	36	
) min Winte						
) min Winte					72	
	10080		1.07	- 0.0	0.9	10	. •	

Stantec UK Ltd		Page 3
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale West A	
Reading, RG1 8DN		— Micro
Date 19/12/2023 14:10	Designed by eedney	
File 231218 Blackberry Lane		Drainag
 Innovyze	Source Control 2020.1	
2		
	Rainfall Details	
Rainfall M	10del FEH	
Return Period (ye		
FEH Rainfall Ver		
	ation GB 201796 203176 SN 01796 03176	
Data Summer St		
Winter St		
Cv (Sum	nmer) 0.800	
Cv (Wir		
Shortest Storm (m		
Longest Storm (m Climate Char		
	-yo v v v v v v v v v v v v v v v v v v v	
	Time Area Diagram	
נ	Iotal Area (ha) 0.003	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.003	

Stantec UK Ltd		Page 4
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale West A	
Reading, RG1 8DN		Micro
Date 19/12/2023 14:10	Designed by eedney	Drainage
File 231218_Blackberry Lane	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 20.200

Swale Structure

Infiltration Coefficient Base (m/hr) 0.00000 Length (m) 44.0 Infiltration Coefficient Side (m/hr) 0.00000 Side Slope (1:X) 4.0 Safety Factor 2.0 Slope (1:X) 100.0 Porosity 1.00 Cap Volume Depth (m) 0.150 Invert Level (m) 20.050 Cap Infiltration Depth (m) 0.000 Base Width (m) 0.2

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	60.0	Coefficient of Contraction	0.600
Length (m)	5.000	Upstream Invert Level (m)	20.050
Roughness k (mm)	0.600		

tec UK										Page
rsham B	Bridge	e Hou	se		3326	10851 E	Phoenix S	Solar Pa	ark	
rman Pl	ace				Swal	e West	В			
ing, RG	18DM	N								Mic
19/12/			1		Desi	aned hy	y eedney			– Mici
										Drai
231218	_втас	CKDer	ry Lan	e		ked by				
vyze					Sour	ce Cont	crol 2020	0.1		
	Summ	nary (of Resi	ults f	or 10)0 year	Return	Period	(+40%)	<u> </u>
				Half Dı	rain T:	ime : 2 r	minutes.			
	Storm		Max	Max		ax	Max	Max	Max	Status
	Event			-			Control Σ			
			(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	20.993	0.153		0.0	6.7	6.7	0.8	ОК
30	min S	Summer	20.989	0.149		0.0	6.6	6.6	0.8	ΟK
60	min S	Summer	20.971	0.131		0.0	5.6	5.6	0.6	0 K
			20.942			0.0	3.9	3.9		
			20.927			0.0	3.0	3.0	0.2	
			20.917			0.0	2.4	2.4		0 K
			20.903			0.0	1.8	1.8		
			20.896			0.0	1.5	1.5	0.1	
			20.892			0.0	1.3	1.3	0.1	
			20.889			0.0	1.1	1.1		
			20.884			0.0	0.9	0.9	0.0	
1440	min S	Summer	20.877	0.037		0.0	0.7	0.7	0.0	ΟK
2160	min S	Summer	20.872	0.032		0.0	0.5	0.5	0.0	0 K
2880	min S	Summer	20.869	0.029		0.0	0.4	0.4	0.0	ΟK
			20.864			0.0	0.3	0.3	0.0	
			20.862			0.0	0.2	0.2	0.0	
			20.861			0.0	0.2	0.2	0.0	
			20.860			0.0	0.2	0.2	0.0	
			20.859			0.0	0.2	0.2		
15	min W	Vinter	20.991	0.151		0.0	6.6	6.6	0.8	ОК
			Storm		Rain		Discharge			
			Event	(п	un/hr)	Volume (m³)	Volume (m³)	(mins))	
						()	(m)			
			min Sur			0.0	3.5		11	
			min Sur		87.218	0.0	4.9	9	19	
			min Sur		7.895	0.0	6.5		34	
			min Sur		84.230	0.0	7.7		64	
			min Sur		25.256	0.0	8.5		94	
			min Sur		20.381	0.0	9.1		24	
			min Sur		5.080	0.0	10.1		84	
			min Sur		2.158	0.0	10.9	9 2	46	
			min Sur		0.281	0.0	11.5		00	
			min Sur		8.961	0.0	12.0		58	
			min Sur		7.212	0.0	12.9		88	
			min Sur		5.301	0.0	14.3	3 7	10	
			min Sur		3.899	0.0	15.7		00	
			min Sur		3.146	0.0	16.9		28	
			min Sur		2.340	0.0	18.9		20	
		5760	min Sur	nmer	1.917	0.0	20.6		48	
			min Cur		1 661	0 0	22 /		60	

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

1.664

1.495

1.376

7200 min Summer

8640 min Summer

15 min Winter 126.207

10080 min Summer

22.4

24.1

25.9

3.8

3560

4336

5192

11

Stantec UK	Ltd								Page
aversham i	Bridge Hou	se		3326	10851	Phoenix S	Solar Pa	ark	
aterman P	lace			Swal	e West	В			
eading, R	21 8 0 1								
		1		Dee'	1 1.				- Mic
	/2023 14:1			Desi	gned b	y eedney			Drai
'ile 23121	8_Blackber	ry Lan	e	Chec	ked by	JNP			Digi
nnovyze				Sour	ce Con	trol 2020	0.1		
		_			_				
	Summary	of Resi	ilts f	or 10	00 year	Return 1	Period	(+40%)	_
	Storm Event	Max Level (m)	Max Depth (m)	Infilt	ax tration /s)	Max Control Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
20) min Winter	20 070	0 1 2 0		0.0	6.1	6.1	0.6	ОК
) min Winter) min Winter					0.1 4.6	6.1 4.6		
					0.0				
) min Winter				0.0	2.8	2.8		
) min Winter				0.0	2.1	2.1	0.1	
) min Winter				0.0	1.7	1.7		
) min Winter				0.0	1.3	1.3		
) min Winter				0.0	1.0	1.0	0.0	
) min Winter				0.0	0.9	0.9	0.0	
) min Winter				0.0	0.8	0.8	0.0	
) min Winter				0.0	0.6	0.6	0.0	ΟK
) min Winter				0.0	0.5	0.5	0.0	ΟK
2160) min Winter	20.866	0.026		0.0	0.3	0.3	0.0	0 K
2880) min Winter	20.864	0.024		0.0	0.3	0.3	0.0	ΟK
4320) min Winter	20.861	0.021		0.0	0.2	0.2	0.0	ΟK
5760) min Winter	20.859	0.019		0.0	0.2	0.2	0.0	ΟK
7200) min Winter	20.857	0.017		0.0	0.1	0.1	0.0	ΟK
8640) min Winter	20.857	0.017		0.0	0.1	0.1	0.0	ΟK
10080) min Winter	20.856	0.016		0.0	0.1	0.1	0.0	ΟK
		Storm	-	Rain	Floodod	l Discharge	Timo-Do	.	
		Event			Volume	-			
		Event	(11	uu/ 11£)	(m ³)	(m ³)	(mins)		
	3(min Wir	nter 8	7.218	0.0	5.2	2	19	
		min Wir		7.895	0.0			34	
		min Wir		4.230	0.0			64	
		min Wir		5.256	0.0			94	
) min Wir) min Wir		0.381	0.0			24	
) min Wir		5.080	0.0			82	
) min Wir) min Wir		2.158	0.0			46	
) min Wir) min Wir		0.281	0.0			04	
) min Wir		8.961	0.0			68	
				7.212				86	
			ntor	1.414	0.0				
	960	min Wir			0 0	1			
	960 1440) min Wir) min Wir	nter	5.301	0.0			16	
	960 1440 2160) min Wir) min Wir) min Wir	nter nter	5.301 3.899	0.0	16.7	11	28	
	960 1440 2160 2880) min Wir) min Wir) min Wir) min Wir	nter nter nter	5.301 3.899 3.146	0.0	16.7 18.0	2 11) 14	28 48	
	960 1440 2160 2880 4320) min Wir) min Wir) min Wir) min Wir) min Wir	nter nter nter nter	5.301 3.899 3.146 2.340	0.0 0.0 0.0	16.7 18.0 20.0	11 14 21	28 48 88	
	960 1440 2160 2880 4320 5760) min Wir) min Wir) min Wir) min Wir) min Wir) min Wir	nter nter nter nter nter	5.301 3.899 3.146 2.340 1.917	0.0 0.0 0.0 0.0	16.7 18.0 20.0 21.9	11 14 21 29	28 48 88 04	
	960 1440 2160 2880 4320 5760 7200) min Wir) min Wir) min Wir) min Wir) min Wir) min Wir) min Wir	nter nter nter nter nter nter	5.301 3.899 3.146 2.340 1.917 1.664	0.0 0.0 0.0 0.0 0.0	16.7 18.0 20.0 21.9 23.8	11 14 21 22 23 33	28 48 88 04 36	
	960 1440 2160 2880 4320 5760 7200 8640) min Wir) min Wir) min Wir) min Wir) min Wir) min Wir	nter nter nter nter nter nter	5.301 3.899 3.146 2.340 1.917	0.0 0.0 0.0 0.0	16.7 18.0 20.0 21.9 23.8 25.6	7 11 0 14 0 21 0 29 3 33 5 41	28 48 88 04 36	

332610851 Phoenix Solar Park	
SSECTOOSE THOCHER DOTAL TAIN	
Swale West B	
	Micco
Designed by eadney	
	Drainag
Source Control 2020.1	
ainfall Details	
ms Yes	
ms Yes	
er) 0.800	
0.850	
s) 15	
s) 10080	
e % +40	
me Area Diagram	
al Area (ha) 0.014	
0 4 0.014	
	Designed by eedney Checked by JNP Source Control 2020.1 Ainfall Details el FEH s) 100 on 2013 on GB 201796 203176 SN 01796 03176 pe Point ms Yes ms Yes r) 0.800 r) 0.850 s) 15 s) 10080 % +40 me Area Diagram al Area (ha) 0.014 ime (mins) Area

Stantec UK Ltd		Page 4
Caversham Bridge House	332610851 Phoenix Solar Park	
Waterman Place	Swale West B	
Reading, RG1 8DN		Micro
Date 19/12/2023 14:11	Designed by eedney	Drainage
File 231218_Blackberry Lane	Checked by JNP	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 21.000

Swale Structure

Infiltration Coefficient Base (m/hr) 0.00000 Length (m) 128.0 Infiltration Coefficient Side (m/hr) 0.00000 Side Slope (1:X) 4.0 Safety Factor 2.0 Slope (1:X) 100.0 Porosity 1.00 Cap Volume Depth (m) 0.160 Invert Level (m) 20.840 Cap Infiltration Depth (m) 0.000 Base Width (m) 0.3

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	60.0	Coefficient of Contraction	0.600
Length (m)	5.000	Upstream Invert Level (m)	20.840
Roughness k (mm)	0.600		